
w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

JS Signature v1.0.2
by Brainy Data Limited

About JS Signature
Introduction
JS Signature is an Omnis java script component that provides signature capturing capabilities for
your Omnis Studio java script client applications. The intended target implementation is touch-
screen devices but JS Signature can also be used with mouse or touch pad driven devices.

Downloading the Software and Examples
If you have not done so already you can download the demo or full release software components
from the following locations:

Demo Software and examples: https://demos.brainydata.com/download.htm

Release Software: https://support.brainydata.com/jssignature.htm

Installing the Software
JS Signature software requires Omnis Studio 6.0.2 or better.

Please refer to the readme.txt file in the downloaded folder for detailed instructions regarding
installation. Here is a quick summary of what has to be installed prior to using the software

1. Copy the jsSignatureBD component DLL to the JSCOMP folder in your Omnis tree.

2. Copy the ctl_signature.js script file to the HTML/SCRIPTS folder in your Omnis’
application support folder.

3. Modify the jsctempl.htm file in your Omnis’ application support folder to include the
circled line of code in figure 1 below.

4. If using Studio 6.0.2, replace the Omnis JS script files in your Omnis’ application
support folder with the provided 6.0.2 patch scripts.

figure 1

Deploying your software
Please refer to the license agreement for rules on deployment.

Documentation

http://www.brainydata.co.uk/support/license/jssignature_license.htm

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

This documentation describes the functionality provided by JS Signature only. You may also
wish to read the documentation relating to PDFDevice as this component is used in the JS
Signature example library.

As a minimum we recommend that you read the following Chapters:

Introduction and Designing JS Signature.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

Introduction
Overview
The JS Signature software consists of the following

i. The example classes in the "jssignature.lbs" library.

ii. The external component library jsSignatureBD for the Omnis design IDE

iii. The web client script ctl_signature.js

iv. A modified jsctempl.htm which includes the ctl_signature.js file.

For an introduction on how to integrate the JS Signature software into your library, please read
the chapter Designing JS Signature.

Examples
There are a number of classes that demonstrate the use of the JS Signature software, however,
the remote form class rfSignature is designed to demonstrate all the important features of the JS
Signature control. The example also requires the Brainy Data PDFDevice external component
which should have been included in the JS Signature demo software. PDFDevice is not a
requirement to use JS Signature. It merely helps to demonstrate one of its uses.

The example library does not require installation and can be opened from anywhere. For a
description of its classes see the Examples Reference.

External component Library
The external component library provides the design interface for the control’s properties,
methods and events. These are described in more detail in the chapter Designing JS Signature.

The java script
The java script file ctl_signature.js implements the client functionality for the control. It has been
minified using the google closure compiler to reduce the size of the script and thus may not be
very readable. This file should be installed in accordance with the instructions in the Welcome
chapter.

The modified template file
The HTML file jsctempl.htm is based on the original Studio 6.0.2 jsctempl.htm with the addition
that it includes the ctl_signature.js java script file. You should modify your ctl_signature.js file in
your Omnis tree, or replace it with the provided file. This has to be done so that the control’s
java script is loaded during client execution.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

Designing JS Signature
Introduction
This chapter gives a brief description of what is involved to add the signature control to your
java script client application. For a more detailed description of the example classes and a
complete list of the external component properties and methods please refer to the chapters
Examples Reference and External Component Reference.

Designing the appearance
The JS Client component implements external DLLs for the design interface. This allows you to
pick the JS client control from the component store, place it on your remote form and start
designing the properties. The control’s properties allow you to design the style and color of the
signature reproduction and the background and border appearance.

Choosing the signature appearance
The JS Signature control is designed to capture pen strokes and from these pen strokes reproduce
a fluid signature. Recording pen strokes involves the recording of pen placements and
movements, which are essentially device mouse or touch events. Simply reproducing lines based
on these events does not always result in a satisfactory reproduction of a signature. Thus JS
Signature implements special smoothing algorithms as well as thickening and thinning
algorithms for the individual strokes of a signature. To offer some control over these algorithms,
JS Signature provides the properties $sigcolor, $sigpenstartsharpness, $sigpenendsharpness and
$sigpenthickness.

Other appearances
The control further provides properties that allow some control over the appearance and
placement of the clear icon (the clear icon allows a signee to clear a signature and start again)
and the prompt text (text such as “Sign here” can be displayed inside the signature box).

The properties $cleariconmargin and $cleariconsize control the clear icon, the standard Omnis
font properties together with the properties $textcolor, $textcolorwhendrawing, $textprompt,
$textx and $texty control the prompt.

Handling the events
As the signee signs within the signature box, the control generates the event evSignatureChanged
every time the signee lifts the pen or stylus. It is not advisable that the signature is committed to
the server at this point as the signature may consist of multiple strokes. It is recomended that a
seperate button is placed in the form which can be clicked to submit the signature to the server
once the signee is satisfied. The evSignatureChanged event can be used to enable this button.
This description implies that the $event method which handles this event should be implemented
to be executed on the client as there is no need for server involvement.

This recommendation also applies for the evSignatureCleared event which is generated when the
signee clicks the clear icon. In this case, the event can be used to disable the submit button.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

Handling the data
The signature control provides a $dataname property. This property should be assigned with the
name of an instance variable of type binary. When the server is called, any signature data within
the control would have been assigned to this variable. THe signature data will be a URL with an
imbedded asset which is base 64 encoded image data and a mime type. The static method
$decodesignature can be used to convert this data to raw PNG for use with Omnis.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

Examples Reference
Introduction
This reference serves as a guide to the classes that are provided by the JS Signature example. It
gives a brief description of each class. More information can be found in the classes’ $desc
property and the many comments in the classes’ code.

The example library implements two facets. The capturing and converting of signatures to a
PNG image, and the combining of the image with a document for display on the client.

Please note: The example requires the use of the Brainy Data PDFDevice product which is
provided as part of the demo software. It is not a requirement to license this additional software
in order to implement the JS Signature control for the purpose of signature capturing.

Example Classes

rfSignature
This remote form provides the interface for capturing the signature and displaying a sample
document with the signature superimposed.

When the form receives a submit request, typically after a signature was provided on the client,
the method “handleSubmit” converts the signature data to a PNG image and produces a PDF
document containing the signature below some sample text. This document is stored in the
instance and the generic HTML control is assigned an embed tag that will cause an ultra-thin
client request for fetching the document via the rtGetPdf task.

rtSignature
The design task for the remote form. It does not implement any functionality and is purely there
as it is required by Omnis.

rtGetPdf
This remote task is called when the HTML control on page two of the rfSignature form is
assigned an URL, that executes an ultra-thin request to return a PDF document in mime format
suitable for display in an embed tag. This task simply returns the already produced PDF from the
rfSignature server based class instance.

rPdf
This report class is used to print the sample text and signature image to a memory based PDF
file.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

External Component Reference
Introduction
This chapter lists all the JS Signature control properties, static methods, JS client methods and
events.

Contents
Static Methods - Static methods are not associated with the control and can be used
anywhere in an Omnis server method. They cannot be used in methods that are executed
on the client. You can select static methods from the Functions tab in the Omnis Catalogue.

Object Properties - The control implements a number of properties that allow some control
over the signature reproduction as well as user prompts and appearance changes during
signature capture. These properties can only be assigned during design mode as the JS
Signature control does not implement any client side property handling. It was deemed
unnecessary as the design properties offer most of the required functionality for signature
capturing, and thus substantially reduced the size of the java script.

The control may also display properties that are standard properties for JS controls. This
documentation will only document standard properties if they require further explanation
in relation to their use with the JS Signature control.

Properties shown in red are read-only and cannot be assigned.

Object Methods - Object methods are associated with the client control and can only be
called from methods that are executed on the client.

Object Events - Events are usually generated as a result of user actions. It is generally
recommended that $event methods that receive these events are executed on the client and
if any server interaction is required, specific server methods can be called from the client
method.

The control may also display events that are standard events for JS controls. This
documentation will only document standard events if they require further explanation in
relation to their use with the JS Signature control.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

Static Methods
Static methods are not associated with the control and can be used anywhere in an Omnis server
method. They cannot be used in methods that are executed on the client. You can select static
methods from the Functions tab in the Omnis Catalogue.

Note: When picking static methods from the catalogue, Omnis appears to prefix static methods
implemented by JS client libraries with “RF:”. This prefix must be removed as the method will
not function with this prefix in place. We don’t know why Omnis prefixes some methods in this
way.

$decodesignature()
Syntax: jsSignatureBD.$decodesignature(&xData)
Version/Platform: v1.0
This method converts the base 64 encoded URL asset to raw PNG format which can be used
with Omnis picture controls.

Parameter Description

xData This parameter should by of type binary and must contain the
valid URL asset. On return, xData will contain the raw PNG
image data suitable for use with Omnis.

returns return kTrue if xData contained a valid asset which was
successfully converted to PNG. Returns kFalse otherwise

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

Object Properties
The control implements a number of properties that allow some control over the signature
reproduction as well as user prompts and appearance changes during signature capture. These
properties can only be assigned during design mode as the JS Signature control does not
implement any client side property handling. It was deemed unnecessary as the design properties
offer most of the required functionality for signature capturing, and thus substantially reduced
the size of the java script.

The control may also display properties that are standard properties for JS controls. This
documentation will only document standard properties if they require further explanation in
relation to their use with the JS Signature control.

Properties shown in red are read-only and cannot be assigned.

Name Type Description

$cleariconmargin Integer Specifies the margin in pixels between the clear
icon and the controls border.

$cleariconsize Integer Specifies the diameter in pixels for the clear icon.

$dataname standard property Specifies a binary variable that is to receive the
signature data from the client. When data is
received by the server, it is in the format of a
HTML 5 URL asset that contains base 64
encoded image data and mime format
information. Before it can be used as an image,
you must call the static method $decodesignature.
This method will convert the data inside
var_name to raw PNG.

$nocanvassupport Character Specifies the text that is displayed when the
browser does not support the canvas control.

$sigcolor Color Specifies the color of the signature.

$sigpenendsharpness Integer Specifies the number of vertices between the full
pen thickness and the point at which the stroke
ends. Vertices are time impacted thus a faster
stroke will result in a longer path from full
thickness to end.

$sigpenstartsharpness Integer Specifies the number of vertices between the start
of the stroke and the point at which the stroke
reaches full pen thickness. Vertices are time
impacted thus a faster stroke will result in a
longer path to full thickness.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

$sigpenthickness Integer The pen thickness in pixels (canvas standard
pixel measurement).

$textcolor standard property The text color property is used for the text prompt
that is displayed inside the signature box. See
also $textprompt and $textx and $texty.

$textcolorwhendrawing Color The text color used for the text prompt when the
user has started signing within the box. See also
$textcolor.

$textprompt Character The prompt displayed inside the signature box.
See also $textx and $texty.

$textx Integer The horizontal position of the text prompt. See
also $textprompt.

$texty Integer The vertical position of the text prompt. See also
$textprompt.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

Client Methods
Object methods are associated with the client control and can only be called from methods that
are executed on the client.

$clearsignature()
Syntax: $cinst.$objs.Signature.$clearsignature()
Version/Platform: v1.0
This methods clears the signature box and prepares it to receive a new signature.

Parameter Description

returns return kTrue.

w
w
w
.b
ra
in
yd
at
a.
co
m

JS Signature Documentation 6 Mar 2019 at 12:49

Object Events
Events are usually generated as a result of user actions. It is generally recommended that $event
methods that receive these events are executed on the client and if any server interaction is
required, specific server methods can be called from the client method.

The control may also display events that are standard events for JS controls. This documentation
will only document standard events if they require further explanation in relation to their use
with the JS Signature control.

evSignatureChanged
This event is generated when the user lifts the pen, after having started to sign. Prior to the
control generating the event, the signature data so far is committed to the instance variable in
the client form instance.

Please be aware that this does not mean the signature is complete. Many signatures involve
multiple strokes where the pen is repeatedly place and lifted. Thus it is not advisable to commit
the signature to the server when this event is received. A better strategy would be to place a
button control on the form that allows the operator to manually submit the signature to the
server.

Thus, the $event method that implements this event must be executed on the client.

Event Parameter Description

no event parameters

evSignatureCleared
This event is generated when the user clicks the clear icon, or an Omnis method calls
$clearsignature().

This event indicates that the signature box is ready to receive a new signature. Prior to the
control generating the event, the instance variable associated with this control would have been
cleared by the control.

Event Parameter Description

no event parameters

	About JS Signature
	Introduction
	Downloading the Software and Examples
	Installing the Software
	Deploying your software

	Documentation

	Introduction
	Overview
	Examples
	External component Library
	The java script
	The modified template file

	Designing JS Signature
	Introduction
	Designing the appearance
	Choosing the signature appearance
	Other appearances

	Handling the events
	Handling the data

	Examples Reference
	Introduction
	Example Classes
	rfSignature
	rtSignature
	rtGetPdf
	rPdf

	External Component Reference
	Introduction
	Contents
	Static Methods
	$decodesignature()

	Object Properties
	Client Methods
	$clearsignature()

	Object Events
	evSignatureChanged
	evSignatureCleared

