
w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

OWrite v5.4
by Brainy Data Limited

About OWrite
Latest Changes
For a list of the latest changes please scroll to the end of this chapter or click here.

Important note about version 4.1: Documents that are loaded with version 4.1 will be
converted to the version 4.0 format and will no longer be compatible with OWrite versions
prior to version 4.0. Please make backups of all your documents prior to using this release.

Introduction
OWrite is a cross-platform word processor component for Omnis Studio. It is fully integrated
with our OSpell2 spell checker software and can be used with PDFDevice our latest PDF
generation tool. All three products can be purchased as a single package. For detailed
information about OSpell2 please refer to the separate documentation provided in the
documentation folder.

The following is a brief description of the various parts of this software.

1. The OWrite, OSpell2 and PDFDevice external components contain the word processor,
spell checker kernels and PDF printing engine. The OWriteW components implement
the OWrite JavaScript client design components.

2. The OSpell2 library implements the entire interface that is required to enable spell
checking in your desktop libraries. It is designed in such a way that it can be used as is,
alongside your own libraries.

3. The example library and data file provide practical working examples of how
PDFDevice, OSpell2 and OWrite can be used with your own library.

Installing the Software
There are a number of components to install and the component names vary between platforms.
As a general rule, the downloaded folder containing the software will be organised so that you
may follow these generic steps.

The downloaded folder contains folders for different versions of studio, i.e. studio430,
studio500, studio520, studio600, studio610, studio800 and studio810.

• Open the appropriate Omnis Studio folder. Always use the latest version that is not later
in version than your version of Omnis Studio. For example, for Studio 5.0.2 you would
use components from the studio500 folder and not the studio520 folder.

The Omnis Studio folder may contain two further folders called JSCOMP and XCOMP. These
may or may not be post fixed with a three letter platform identifier, i.e. _mac, _win or _lin.

Page 1 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

• Copy the components from inside JSCOMP and XCOMP to your Omnis-tree. You will
find identical named folders inside the tree. On Mac OSX these can be found inside the
Omnis bundle->Content->MacOS.

• For software that supports the Omnis Java script platform, there will be an additional
folder named html. This folder will contain additional java scripts and modification to
jsctempl.htm that require integration with your Omnis tree. Please refer to the
accompanied readme.txt file

You can run the example library directly from the OWritePlus folder. If you move the example
library from this folder, you must also move all other files and folders contained within.

Deploying your software
Please refer to the license agreement for rules on deployment.

Documentation
This documentation describes the functionality provided by OWrite only. It is recommended that
you also read the OSpell2 and PDFDevice documentation to gain a better understanding of the
complete OWrite Plus product. The OSpell2 documentation is currently only available as HTML
files in the Documentation’s folder of the OWrite Plus examples download.

As a minimum we recommend that you read the following Chapters:

OWrite: Introduction and Designing OWrite.

JS-OWrite: Introduction, Designing OWrite and Designing JS-OWrite.

OSpell2: From the separate OSpell2 documentation read Welcome, Introduction and
Integrating OSpell2.

PDFDevice: From the separate PDFDevice documentation read Welcome, Introduction and
Designing PDFDevice.

Table of Contents

Page 2 of 138

http://www.brainydata.com/supportpublic/documentation/html/ospell2/welcome.htm
http://www.brainydata.com/supportpublic/documentation/html/ospell2/intro.htm
http://www.brainydata.com/supportpublic/documentation/html/ospell2/integrat.htm

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

History
Below is a summary of the most recent enhancements.

Version Enhancements

5.4.0 The new property $grammaroptions can be assigned a set of constants that define
various grammar options. We may add to these options in future releases.
The current supported options are:
kWriGrammarCapFstWrd: First word of a sentance is capitalized.
kWriGrammarDelDblSpace: double spaces are removed when deleting the
current selection.

5.3.0 The following properties have been renamed to work-around tokanization issues in
Studio 10.2 when oWrite uses properties that override internal notation
names:

$::paper -> $docpaper
$::paperlength -> $docpaperlength
$::paperwidth -> $docpaperwidth
$::orientation -> $docorientation
$::topmargin -> $doctopmargin
$::leftmargin -> $docleftmargin
$::bottommargin -> $docbottommargin
$::rightmargin -> $docrightmargin
$::pagecount -> $docpagecount
$::pagenumber -> $docpagenumber
$::showrulers -> $showpaperrulers
$::insert() -> $docinsert()
$::print() -> $docprint()

The new property $evalpermanent is a read only property that returns kTrue if a
document is loaded that was previously saved using $savedata with
bMakeDataPermanent set to kTrue

5.2.0 oWrite picture objects with click calculations that specify an a valid URL beginning
with 'http://' or 'https://' will now produce clickable links when printed to
PDFDevice.

Simple RTF returned from table cell calculations may now contain additional
calculations that reference data in the list associated with the table using the
calculation “$ref.COLUMN_NAME”. Thus, one can now use oWrite itself
to create simple templates and export them as RTF and insert this RTF in
table cells via a cell’s calculation.

Page 3 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

5.1.0 OWrite now supports the import of basic MSWord fields (i.e. date, time, page count
and page number)

The property $maximagesize is now also applied when using $docinsert().

The new property $pasteoptions controls what can be pasted into a oWrite desktop
document from the clipboard.

5.0.0 New property $curlistlevel for the support of sub-lists as well as new editing
behaviour when editing lists and sub-lists.

New saving mode kWriOutputHF to force the output of a single header at the
beginning of the document and a single footer at the end of the document
for non-paginated output formats such as plain text and HTML.

Major improvements to $papercontinuous. Static tables will now generate headers
and footers around page breaks, display of main header and footer when in
continuous paper mode, and manual page breaks no longer cause structural
breaks in single page mode.

New $headfootnoedit property which disables the editing of headers and footers if
set to true.

New property $docbulletchar. This property can be used to specify a different
unicode character for the bullet list. Note: not all browsers support custom
bullet characters.

New property $curobjevalmaxheight which specifies the maximum height for a table
cell or text box when the content is evaluated. A positive value indicates
centimetres or inches and a negative value the number of lines of text.

The standard Omnis properties $bordercolor and $linesyle are now supported by the
oWrite desktop control.

4.5.0 New JS-OWrite find and replace support. Please view technical note TN0031 for a
full description of this new feature.

Implemented $curobjalign for table cells for specifying the vertical align of table
cells.

There are a number of new info object types. Please see constants
kWriObjTypeInfo...

New custom parameter kWriLoadMetaQuality for loading RTF data.

4.3.0 Change to $::insert. The third parameter now takes one of the constants
kWriInsertSelect or KWriInsertKeepStyles.

Click calculations can now be plain text if they begin with “http://” or “https://”.
When these objects are clicked, OWrite will generate an evObjClick event
instead of attempting to execute it as Omnis notation.

Page 4 of 138

https://supportpublic.brainydata.com/tn/tn0031.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

4.1.0 Major changes to the way OWrite measures text. You must read case 1641 release
notes before using this software.

OWrite now supports dictation on Macintosh.

New method $getselpageoffset for retrieving offset of current selection.

Method $getfontlist has new parameter for retrieving font heights for JS-Client. See
release notes for case 1641.

New warning kWriWarnBadPagenateData which is generated during loading when a
JS-Client document contains only partial pagination data.

4.0.0 Implements JS-OWrite. Please see chapter Designing JS-OWrite.

3.8.6 New border-less printing option. See $::print.

3.8.5 New property $watermarks for providing a list of watermarks that are to be added to
the specified document pages during printing.

New property $docdecimaltabchar for changing the character that is used for
positioning decimal tab positions.

3.8.0 New property $evalkeeplf. If true it enables the importing of line feeds via plain text
calculation results.

New property $nouserscroll. If true prevents users from scrolling OWrite content.

3.6.5 New property $checkoverflow. If true OWrite prevents the user from entering more
content than can be displayed in the field.

3.6.0 RTF Import

- added support for importing headers and footers

- added support for importing page and date fields

- table inside headers or footers are converted to tabs

Paragraph lists

- auto indent calculation changed to (1.5cm * font size / 12). Result is
snapped to 0.25 cm.

- Roman numerals are now right justified at first line indent position.

- Using backspace to remove paragraph list now changes document style to
the default style if the current document style specifies the paragraph list.

Calculated fields

- empty results will now be displayed using unicode character 200B which
is a zero width space character (unicode OWrite only).

Page 5 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

3.5.0 New progress feature

- New property $showprogress. if true, progress events (evProgress) will be
generated, for NV objects $progress method is called.

- New event evProgress event type constants kWriProgress....

Document Merging Optimisation

- New merge options kWriMerge... for $mergedocs().

PNG and JPEG raw picture support

- Can now insert raw PNG or JPEG images or return raw images for
calculated picture fields. See Calculated Picture and the $::insert method
relating to picture objects.

- New load data option kWriLoadRawPicts.

- New OWrite option $pasterawpicts.

All changes made to the examples are marked with a change marker and a date. All
recent changes can be found by searching for “CHANGE_2014”. This will display
all changes made in 2014. Searching for “CHANGE_2014_05” will display all
changes made in May 2014, searching for “CHANGE_2014_06” will display all
changes made in June 2014, etc.

3.0.6 $owrite_export can now return full hyper-links as in ‘’

3.0.5 Changes:
- New parameter bSortInUse for $getfontlist.
- The method $loadfontmap can now be used on the web-client
- Web-Client examples have been updated to work with new version 3
features.

3.0.0 New Main Features:
Bookmarks, Advanced Font Handling, Headers & Footers,
Split Table Rows, Editing Evaluated Documents, Multi-Selection Find,
Plain Text Analyzes.

New OWrite document object methods:
$setdatafromsrc, $getbookmarks.

New OWrite document object properties:
$showinvisibles, $headfootenabled, $headermargin, $footermargin,
$headfootoddeven, $headfootfirstpage, $firsttabiconid, $notableoutline,
$nospellcheck, $curobjcontainer, $linktextcolor, $linktextstyle,
$maximagesize, $newprimeasure, $curhighlight, $curlistnumstart,
$curbookmark, $curtblrowevalcansplit, $curobjdatasrc, $curobjnoenter,
$curobjname, $curobjdisplay, $curobjcalc, $curobjclickcalc, $curtblname,
$curtblcalc, $curobjdatadpi.

Page 6 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

New OWrite document object events:
evGetDataFromSrc, evMultiFind.

Improvements to OWrite document object properties:
$curfontcolor, $curtbldata.

New OWrite search object methods:
$setresultlist, $getresultlist.

New OWrite search object properties:
$multiselection, $multiselectlist, $multiselectbackcolor,
$multiselecttextcolor, $selectbackcolor, $selecttextcolor, $multiwordfind.

Improvements to static methods:
$loadfontmap.

New static methods:
$docversion, $getfontlist.

3.0.0
continued

New OWrite constants:
kWriObjTypeHeadFoot, kWriObjTypeInfo, kWriObjTypeInfoPgCnt,
kWriObjTypeInfoPgNum, kWriObjTypeInfoDate, kWriObjTypeInfoTime,
kWriMenuItemEditUndo, kWriMenuItemEditRedo,
kWriMenuItemEditCut, kWriMenuItemEditCopy, kWriMenuItemEditPaste,
kWriMenuItemEditClear, kWriMenuItemEditSelectAll,
kWriTextCreateMap, kWriHtmlNoAutoSize, kWriHtmlBgColor,
kWriHtmlTitle, kWriSelectHeadEvenDef, kWriSelectFootEvenDef,
kWriSelectHeadOdd, kWriSelectFootOdd, kWriSelectHeadFirst,
kWriSelectFootFirst, kWriSelectHeadFoodNext, kWriSelectHeadFoodPrev,
kWriSRPlainText, kWriSRBookmark, kWriErrNoTextMap,
kWriErrEndOfTextMap, kWriErrNotMultiSelect.

2.6.0 New OWrite constants:
kWriHtmlNoAutoSize and kWriHtmlBgColor

2.4.1 New OWrite document object properties:
$docwarnings

New OWrite constants:
kWriErrWarning

2.2.4 New OWrite document object properties:
$curobjuserdata and $curtbluserdata.

Page 7 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

2.2.2 New OWrite document object properties:
$curtblmultidatarows, $datanametype

New OWrite constants:
kWriSpllInvalSelection, kWriSpllInvalAll

Other enhancements:
The table notation $table.$total can now specify cells from other tables in
the document, i.e. $table.$total(tableA.cell1,tableB.cell1,2)
The last parameter of the table notation $table.$total can now specify a jst()
style formatting string as in $table.$total(cell1,cell2,"N2,")

2.2.0 New OWrite constants:
kWriSaveNonUnicode, kWriTextFmtUTF16 and kWriTextFmtUTF8.

Other enhancements:
Unicode support. Both unicode and non-unicode versions of OWrite now
save document data in UTF8 format. That means that documents saved with
version 2 cannot be loaded by previous versions of OWrite.

2.1.2 New OWrite document object properties:
$docuserdata.

Improvements to:
$mergedocs()

New OWrite constants:
kWriHtmlRawSupport

2.0.0 New Main Features:
OWrite Table fields

New OWrite document object methods:
$picturefrompage(), $addstyle(), $removestyle(), $getselection(),
$convselection(), $tableaction(), $globalpos()

New OWrite document object properties:
$readonly, $forecolor, $backcolor, $backpattern, $curtbldata, $curtblresult,
$curtblcellspacing, $curtblid, $curtblrowid, $curtblpageheaders,
$curtblpagefooters, $curtblextendable, $curtblrowtype, $curtblcolumnwidth,
$curtblrowheight, $curtblapplymode, $curtblalign, $curtblindent,
$firstselrow, $lastselrow, $firstselcol, $lastselcol, $curobjframeoptions

Improvements to OWrite document object methods:
$print(), $popupmenu(), $setselection(), $getobjslist()

Improvements to OWrite document object properties:
$curobjautosize, $curstrikethrough

Improvements to OWrite document object events:
evPaperChanged

Page 8 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

New OWrite constants:
kWriObjTypeTable, kWriObjTypeTableRow, kWriObjTypeTableCell

New OWrite constant groups:
kWriSelect..., kWriSR..., kWriTblRow..., kWriTblAct..., kWriFrame... and
kWriTblApply....

Page 9 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Introduction
Overview
The OWrite software consists of the following

i. The OWrite example classes in the "OWriteDocumentManager.lbs" library.

ii. The external component libraries OWrite.xcomp (OWrite.dll on windows)

iii. The JS client components OWriteW.jscomp for Omnis and Client (OWriteW.dll on
windows)

iv. The spell checker examples and OSpell2 external component library. For a description
of the spell checker software please refer to the separate spell checker documentation.

For an introduction on how to integrate the OWrite software into your library, please read the
chapters Designing OWrite and Designing JS-OWrite.

Examples
There are a number of classes that demonstrate the use of the OWrite software. These classes are
mainly concerned with the OWrite interface and consist of menus, windows and object classes.
The example library also contains classes that demonstrate the use of the spell checker software.
These classes are not covered by this documentation. All example classes are organised into
separate folders. All OWrite Desktop classes are located in the folder OWrite Examples and all
JS-OWrite server classes are located in the folders OWrite Javascript and OWrite Javascript
Simple

External component Library
The external component library consists of the main editor control and non visual objects for
procedural document handling, including printing and searching without the use of the window
control. A number of constants are defined for the use with properties and methods of the
component objects. These constants can be accessed from the Omnis Catalog -> Constants ->
OWrite. For a description of the external components please read the chapter
External Component Reference

Page 10 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Designing OWrite
Introduction
You should read this entire chapter before attempting to develop OWrite version 3 or later
for the first time, even if you are already familiar with OWrite and have read this chapter
before. For version 3, Large sections of this chapter are new and other sections have been
substantially updated.
This chapter gives a brief description of what is involved to add OWrite to your application. For
a more detailed description of the example classes and a complete list of the external component
properties and methods please refer to the chapters Examples Reference and
External Component Reference.

If spell checking is a requirement, you should also read the separate OSpell2 documentation
which can be found in the documentation folder in the OWrite Plus examples download. You
should read this document first and pay special attention to the chapter “Integrating OSpell2”.

To use OWrite in its simplest form you drop the OWrite control onto your window class and add
a few controls for applying formatting to the current selection. The section Formatting Text
provides basic instructions for doing this. In addition, you will need to add code for loading and
saving documents which is explained in the section Saving and Loading Documents.

To get an overall indication about the work involved to implement many of the OWrite features
including the more advanced features such as page headers, page footers and tables, you should
study this entire chapter in detail, starting with OWrite Basics.

Contents
OWrite Basics - describes basic features such as text formatting, find and replace,
clipboard handling, and saving and loading documents.

Advanced Font Handling - describes font family and typeface interface handling as well as
cross platform/cross word processor font mapping.

Headers & Footers - describes the page headers and footers feature

Data Merging - describes how data merging works and what OWrite document objects can
be used to merge data.

OWrite Tables - describes in detail the OWrite table feature and how it can be used to
merge Omnis list data.

Multi-Selection Find - describes the OWrite multi-selection word or phrase search feature.

Plain Text Analyzes - describes how plain text selection ranges can be used to select
content in a rich text OWrite document.

Web Client - gives a brief description of the limitations and differences one must be aware
of when designing a web-client interface for OWrite.

Page 11 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

OWrite Basics
With the efficient use of Omnis notation, OWrite has implemented a complete customizable
interface that is simple and highly productive during implementation, but also very efficient in
execution. The OWrite Document Manager example demonstrates how flexible and efficient the
OWrite interface is, as the entire interface (with the exception of the rulers) is implemented using
nothing more than standard Omnis controls and notation.

“OWrite Basics”, introduces most of the basic OWrite features and includes links to code that
demonstrate their use (links to code examples will only work if this documentation is viewed
from within Omnis using the example Documentation Manager library). Many OWrite features
require nothing more than a simple introduction, whereas some of the more complex features
have been given a more detailed explanation later in this chapter. “OWrite Basics” will merely
concentrate on creating awareness and basic understanding of the more commonly used features.

Important Note: During copy and paste or import and export actions OWrite requires access to
a variable called OWRITE_TMP_VAR while working with picture data. OWrite uses the image
conversion functions provided by Omnis and requires this variable as storage so that these
functions can access the image data.The variable OWRITE_TMP_VAR must be a binary
variable and it must be an instance variable of the window instance or better still, a task variable
that can be accessed by all methods that deal with OWrite documents.

Formatting Text
The bread and butter of every word processor is its ability to format text and other document
objects such as pictures. In order too provide an interface for OWrite for many of the formatting
options, simple controls such as the check box or radio button are sufficient when they are
directly linked to formatting properties of the OWrite control using notation. Every OWrite
formatting property that effects the current selection has two basic requirements.

1. the control must tell OWrite when the user wants to change the formatting, i.e. the user
toggles a state by clicking the control.

2. the control must reflect any change in the current formatting as the user moves the input
cursor.

For example, to provide a control to display and change the Bold state of the selected text, one
can place a check box on a window and set the $dataname of the check box to ivEditor.$curbold
where ivEditor would be an item reference variable to the OWrite control. Clicking the check
box would result in $curbold being toggled. In order for the check box to reflect changes in the
bold state as the user changes the current selection, the OWrite $event method must implement
the evFormatChanged event and when the event is triggered, issue a redraw command for the
check box. evFormatChanged example...

It is easy to see how simple it is to implement controls to manage OWrite properties such as
$curbold, $curitalic, $curunderline, etc. OWrite implements many of these on/off state
formatting properties for the current selection. Many other formatting options require no more
than radio-button groups to choose between a small range of options and these can be coded just
like check boxes. However, formatting options such as the current style name, font name and
font size require the use of combo boxes or lists. Combo boxes and lists need a little extra work

Page 12 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

as they require the building of Omnis data lists for the choices that are presented to the user. In
addition, because of Omnis intricacies, the main data name of a combo box cannot be directly
linked to OWrite properties. When the evFormatChanged event is received the variables linked
to the combo boxes have to be populated from the appropriate OWrite properties and the controls
have to be redrawn. Equally, when the user picks from a combo box list, or changes the content
via the combo box edit field, code is required that assigns the appropriate OWrite properties.
evStylesChanged example... style picker example...

OWrite implements two methods that can be used to build selection lists for styles and font
names. The list of style names is provided by the OWrite control via the $getstylelist() method.
Whenever the list of styles is changed, either by a document being loaded, text from other editors
being pasted, or styles being added by the user, OWrite issues an evStylesChanged event which
can be used to rebuild the styles list. To build a list of font names, OWrite provides the method
$getfontlist() which can work in conjunction with the OWrite font mapping feature. Both these
features are described in more detail later. $getstylelist() example...

OWrite provides no functionality for building a font size list. font sizes example...

Advanced Formatting
Besides providing basic interface controls for toggling the various text styles you may also wish
to provide interfaces for some of the more complex features. As some formatting options involve
choices that are not easily represented using a simple control such as a check box, radio button
group or combo box, you may have to implement windows that format complex features such as
tabs, bullets and numbering or pictures and tables. The OWrite Document Manager example
implements a large number of windows that demonstrate how more complex features may be
formatted. These windows are designed so that they can be copied to your own library and used
as a starting point for your own interface. Please refer to the Examples Reference for a
description of some of these classes.

Context Menu
The OWrite Document Manager example provides a context menu that is sensitive to the current
selection and will offer different choices depending on what is selected in the document. These
choices may be related to the current bookmark, misspelled word or selected image, etc. OWrite
provides a number of events that are triggered when the user right-clicks the document content,
which are evContextText, evContextSpell and evContextObject. Some of these context clicks
may require additional options within sub-menus which may be complex and varied. For this
purpose, OWrite provides a method called $popupmenu() for displaying a hierarchical context
menu using Omnis lists which can contain sub-lists for your sub-menus, and which can easily be
build on the fly. The same method also has a set of reserved menu item IDs, that implement
standard edit menu options such as cut, copy and paste (see kWriMenuItemEdit... constants). The
enabled state of these reserved menu items will be set by OWrite if they are present in the pop-up
menu list. context menu example...

Bookmarks
Introduced in version 3, the property $curbookmark sets or clears the bookmark for the selected
text. One or more characters must be selected for this property to work. When assigning a
bookmark name that already exists within the document, the assignment will fail. The method

Page 13 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$getbookmarks(&List) returns a single column list of current bookmark names. These names can
be used with $setselection and the constant kWriSRBookmark to go to the specified bookmark in
the document.

Example:
;; the following example positions the document at the first bookmark
Do ivEdit.$getbookmarks(BookmarkList)
Do ivEdit.$setselection(BookmarkList.[1].C1,0,0,kWriSRBookmark)

The OWrite plus document manager example implements the bookmark feature via the context
menu. You can right-click selected text to add or remove a Bookmark. The context menu has a
sub menu of bookmarks that exists within the document. Selecting a bookmark name from the
sub menu will select the bookmark in the document. bookmarks menu example...

Bookmarks have no visible representation by default. To display bookmarks within the
document, you must turn on $showinvisibles. In this mode book marked text is surrounded by a
box.

Undo, Redo, Copy and Paste
OWrite will automatically plug into the standard Omnis Edit menu. If, however, you would like
to have additional buttons on your window, or implement a context menu with edit menu
options, this can be achieved by linking your buttons or menu code to the appropriate OWrite
methods and properties.

The methods $editcopy(), $editcut(), $editclear(), $editpaste(), $editselectall(), $editundo(),
$editredo(), implement standard edit menu functionality. context menu example...

In addition, you can use the properties $undotext and $redotext in the tool tips properties of your
undo and redo buttons.

When you assign OWrite properties from methods, be aware that each property assignment is
added to the undo buffer. If there are a number of property assignments that require to be
collected as a single undo operation you can use the methods $startundo() and $endundo(undo
text). $startundo() example...

If you need to assign properties without affecting the undo buffer, you can assign the property
$undoenabled to kFalse while you make your changes.

Paste from file
Paste from file has been implemented as an event. When the user selects this option from the edit
menu, OWrite generates an evPasteFF event. What you do with this event is entirely up to you.
Typically you would present the user with a file selection dialog and convert the data from the
file to a format compatible with OWrite. You can than use the $::insert method to insert the data
at the current position in the document. paste from file example...

View Options
OWrite has a number of view options. You can show or hide rulers by toggling the property
$::showrulers, and switch between Normal, Page Layout and Field view by assigning on of the
kWriView... constants to the $pageview property. You can link radio buttons and check boxes to
these options by assigning ivEditor.$pageview and ivEditor.$showrulers as their data names. The

Page 14 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

variable ivEditor would be an item reference to the OWrite control.

Saving and Loading Documents
To save and load your documents use the methods $savedata() and $loaddata(). OWrite supports
four formats during saving and loading.

1. OWrite binary format. It is recommended that you store your master documents in this
format. Use binary variables for storage. Example...

2. RTF. Use this format for distribution to clients who do not have OWrite. You can use
text variables for storage in the non-Unicode version of Omnis. But in the Unicode
version, binary fields must be used when saving to RTF. RTF is saved as 7bit ANSII
characters. You can load RTF documents produced by other word processors, but be
aware that OWrite does not support all RTF and some formatting may be ignored during
loading. Example...

3. HTML (v1.50). This format is for saving documents as HTML. You cannot load data in
this format. You can use text variables for storage in the non-Unicode version of Omnis.
But in the Unicode version, binary fields must be used when saving to HTML. HTML
is saved as 7bit ANSII characters in the non-Unicode version and UTF8 in the Unicode
version. Example...

4. Plain text. In the Unicode version, OWrite can save plain text as UTF32, UTF16, UTF8,
Mac Roman and Win ANSI character sets. You can use text variables for UTF32 but
binary fields must be used for any of the other formats. Example...

The constants kWriFmtDefault, kWriFmtRTF, kWriFmtHTML, and kWriFmtText are provided to
specify the format.

In addition, $savedata has custom parameters. Parameters that are specific for individual formats.
See kWriHtml..., kWriSave... and kWriText... for details of custom parameters.

Saving to HTML
When saving data to HTML, OWrite will require additional information prior to starting the
export and during the export. To this end additional custom parameters can be passed to
$savedata. During the export OWrite will call the method $owrite_export to resolve images and
hyper-links.

The additional parameters are described in the External Component Reference sections
kWriFmt... and kWriHtml.... The export method $owrite_export we will discuss here.

The export method must be implemented in the current window class that contains the OWrite
control, or the object class that is derived from the OWrite non-visual object. The method
receives two parameters: the export format, this will be set to ‘html’; and the export type, either
‘href’ for hyper-links or ‘src’ for images. The method is required to return a valid HREF path for
the former, and a valid SRC path for the later. For HREF requests you may also return a fully
formed hyper-link tag such as ‘’ (requires
OWrite version 3.0.6). $owrite_export example...

In future version of OWrite the export method may be called for other export formats also.

Page 15 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Find and Replace
OWrite supports the finding and replacing of text and styles. To implement find and replace two
instances of the external non-visual search objects OWriteSearch are required. These two objects
are used to specify the search criteria and the replace information. To execute a search or replace
operation you call the methods $findnext() or $replace().

find & replace example window...

Note: When passing objects to OWrite methods you must use the notation
searchInfo.$owriteobj.
In addition to the standard find and replace feature, OWrite also provides a multi-selection find,
a feature that can search for multiple words or entire phrases and simultaneously highlight all
occurrences within a document. This feature is explained in more detail in the section
Multi-Selection Find towards the end of this chapter.

Printing
To print an OWrite document you call the method $::print() or you can place an OWrite report
object in your Omnis reports. mail merge omnis report example...

The $::print() method starts an Omnis print job that can be sent to any Omnis print destination.
$::print() example...

Important Note on Printing:
When printing OWrite documents via an Omnis report to the Disk destination and when viewing
this report on another platform, in prior versions, some of the words would overlap or gaps
between words were larger than they should be. It depended very much on the font and sizes that
are used. This was only an issue when viewing the report on screen. When the report was printed
the text was positioned more accurately.

The screen appearance issue was caused by an inability to accurately map some font sizes
between platforms because of the difference in DPI between Macintosh and Windows. OWrite
measures, positions and renders individual words and as a result the cross platform inaccuracy
was effecting the space between the words. For example when using a 10 point font on
Macintosh at 72DPI this should become 13.33 points at 96DPI on Windows. However, Omnis is
forced to either choose 13 or 14 as the size to render the 10 point text. This up-sizing or down-
sizing was causing the issues that were experienced.

In corporation with Tiger Logic we have provided a solution that allows OWrite to add special
text to an Omnis report that is measured more accurately and allows the exact placing of
individual characters in the horizontal plain. This feature is disabled by default and can be
enabled by setting the property $newprimeasure to kTrue, but it will require Studio 5.2 or better.

This feature is not compatible with the current release version of PDFDevice. A new updated
version will be provided in due course.

Printing Watermarks
During printing text based watermarks can be added to the specified document pages by
assigning the property $watermarks. This property can be assigned with the name of a list
(instance or task variable) or list data directly. The list must contain the following columns:

Page 16 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Page: One of the new kWriWM... constants or a positive value in the range 1 to n indicating a
specific page number.

Angle: The angle in degrees (0 = horizontal, 90 = vertical-up, 270 = vertical-down)

InFront: If true, the watermark text is displayed in front of the document content

Font: The name of the font (normal OWrite font mapping rules are applied)

FontStyle: The style of the font, i.e. kPlain, kBold, kItalic, kUnderline

FontSize: Size of the font in points

Text: The watermark text

TextColor: The text colour (can use rgb() function or Omnis colour constants

HorzPos: Horizontal offset from the left paper edge in cms or inches

VertPos: Vertical position from the top paper edge in cms or inches

One can query the $watermarks property to receive a defined list with these columns in place.
For example:

;;clear current watermarks and fetch empty defined list
Calculate ivEdit.$watermarks as #NULL
Calculate myList as ivEdit.$watermarks
;; add watermarks to list
Do myList.$add(kWriWMallPages,45,kTrue,"Arial",kPlain,24,"Brainy Data

Limited",kDarkRed,1,15)
Do myList.$add(2,305,kTrue,"Arial",kItalic,24,"Brainy Data

Limited",kGreen,8,5)
;; apply the watermarks
Calculate ivEdit.$watermarks as myList

There is no limit to the number of watermarks in the list.

Watermarks are not displayed in the editor and are only added to the content during printing.
When using watermarks with the report object, watermarks are only displayed if $ignorepos is
set to kTrue. Watermarks are NOT saved with the document data. If watermarks belong to a
specific document, they could be saved as part of the $userdata or as a separate column in the
document's record.

Spell checking
To enable spell checking for OWrite, you must integrate the spell checker software with your
library. The steps required to integrate the spell checker are fully documented in the OSpell2
documentation inside the Documentation's folder.

In addition to the instructions given in this document you must initialise a spell checker session
for the OWrite background spell check during construction of your OWrite window.

Page 17 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

In your windows $construct method, first initialise your main spell checker object. It should have
been implemented as a task variable that is accessible from your OWrite window. Next initialise
the spell checker session for OWrite. The spell checker session should be an instance of an
object class that is derived from the external object Spll.SpllSession. Once you have initialised
the session, OWrite will directly communicate with OSpell2. OWrite spell checker example...

Translation
OWrite supplies a small number of text strings for the undo menu and buttons and for the display
of page breaks and header and footer text. You can translate these text strings by editing the
string table OWriteStrings in the examples folder.

You must load the string table from your Omnis code and call the OWrite static method
$loadstrings.

Example:
;; our string table is located with the library
Do FileOps.$splitpathname($clib.$pathname,DRIVE,DIR,NAME,EXT)
Do StringTable.$loadstringtable('OWriteStr',con(DRIVE,DIR,'OWriteStrings'))
;; set the appropriate column
Do StringTable.$setcolumn('Deutsch')
;; tell OWrite to load the strings
Do OWrite.$loadstrings('OWriteStr')
;; we have finished with the string table, unload it.
Do StringTable.$unloadstringtable('OWriteStr')

You only need to do this once per Omnis session and it can be done from any of your libraries
during startup or any other appropriate time. If you change the OWrite strings while displaying
documents, you must issue redraw commands to update the displayed documents.

Translating the web client version of OWrite has to be implemented differently. The web client
does not support string tables. OWrite provides the two properties $stringlist and $stringcolumn.
These need to be assigned on the server during $construct.

Web Client Example:
;; our string table is located with the library
Do FileOps.$splitpathname($clib.$pathname,DRIVE,DIR,NAME,EXT)
Do StringTable.$loadstringtable('OWriteStr',con(DRIVE,DIR,'OWriteStrings'))
;; set the appropriate column
Do StringTable.$setcolumn('Deutsch')
;; tell OWrite to load the strings
;; OWrite is the item reference to the form control
Calculate OWrite.$stringlist as StringTable.$loadlistfromtable(’OWriteStr’)
Calculate OWrite.$stringcolumn as StringTable.$getcolumnnumber(’OWriteStr’)
;; we have finished with the string table, unload it.
Do StringTable.$unloadstringtable('OWriteStr')

The property assignments have to be done for every client, but the string table loading could be
done just the once and the resulting list and column number could be cached.

In addition, you may need to change the decimal tab character from a dot to a comma for some
countries. This can be done by assigning the property $docdecimaltabchar.

Font Mapping
For documents to be displayed correctly on all platforms, you can manage your own font

Page 18 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

mapping table. The example library implements the window wFontMapping that manages the
font mapping table in a disk file. OWrite implements two static functions to facilitate the storage
of Omnis list data in a binary file on disk. The function OWrite.$listtobin converts a list to binary
data, and the function OWrite.$listfrombin converts it back again. font map window example...

To turn on font mapping you must load the font mapping table during startup. You load the table
from disk and call the static method OWrite.$loadfontmap. The $construct method of the startup
task in the example library demonstrates how to load a font table. load font map example...

The detailed behaviour of the font map and its varied uses will be discussed later in the section
Advanced Font Handling.

Document Objects
Besides rich text, OWrite supports the following document objects.

• Calculated Fields (see the section “Objects with data merging capabilities”)

• Pictures/Calculated Pictures

• Text boxes

• Tables

• Headers and Footers

Pictures, text boxes and tables can be copied from other word processors that support RTF and
pasted from the clipboard directly into the OWrite document.

All objects, except headers and footers, can be inserted at the current cursor position from Omnis
code. The OWrite method $::insert() takes a number of parameters that tell OWrite the type,
associated data and basic properties. When an object is inserted it is automatically selected, and
additional object properties can be assigned or queried.

The OWrite table, picture, header and footer objects will be explained in more detail later on.

Objects with data merging capabilities
The beating heart of OWrite is it’s ability to merge Omnis data from a database or other sources
using standard Omnis calculations or method calls that can be directly embedded in the
document content. Because these embedded calculations can include any valid Omnis function
or Omnis notation string including notation method calls, there is no limit to their ability to build,
control and format the data that is merged into the document. As a result, the user interface for
merging data can be as simple or as rich as a developer requires.

The facilitators for data merging are some of the OWrite objects described in the previous
section. The Calculated Field, the Calculated Picture, the Text box and the OWrite Table object
implement properties for managing the objects data merging features. Data merging is
documented in more detail in the Data Merging and OWrite Tables sections of this chapter.

Objects with Hyper-Links
As well as providing data merging capabilities, some objects such as the picture and calculated
field objects, provide properties for managing hyper-links. When turning on the property
$curobjclicks, the object can be clicked by a user. The additional property $curobjclickcalc, just
as with $curobjcalc, accepts any valid Omnis function or notation string, but in this case the

Page 19 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

calculation is executed when the user clicks the object. If $curobjclicks is true, but
$curobjclickcalc is empty, OWrite will generate the evObjClick event instead.

Web-Client Note: Because it is not possible to execute custom calculations on the web-client,
even if $curobjclickcalc contains a calculation, OWrite will always generate the evObjClick
event to facilitate the execution of the click calculation on the server.

Picture alternative data
Having many documents stored in a database can increase the size of a database substantially if
these documents contain images such as logos. OWrite provides a feature that prevents OWrite
from storing image data in the OWrite document directly. Instead, a picture object can be given a
calculation that fetches the image data when required. This can substantially reduce the size of a
database if documents share the same images.

To use this feature you assign an Omnis calculation, i.e. a notation method call such as
$ctask.$getImage(Logo) to the property $curobjdatasrc. When OWrite loads the document, it
will execute the calculation to fetch the picture data.

Web-Client Note: Because it is not possible to execute custom calculations on the web client,
OWrite implements an event and method to facilitate the execution of the calculation on the
server. When the OWrite web-client control loads a document, it will generate the event
evGetDataFromSrc, passing it the parameters pObjID, pObjName and pObjCalc. The final
parameter contains the calculation from $curobjdatasrc. On receiving the event you can call a
server method to evaluate the calculation using the eval() function and on return, you can use the
method $setdatafromsrc(pObjID,pObjData) to set the image data for the object in the OWrite
remote form control.

OWrite Version Numbers
In order to ensure that you distribute the correct DLL’s it is a good idea to always check the
version numbers of the external components during startup of your libraries. OWrite version 3
has been changed to return a version number that allows the checking of the OWrite product
version and the Omnis Studio version for which the external component DLL was build. This has
become necessary as the OWrite product ships with three different sets of DLLs for three
different versions of Omnis Studio. It is vital that the correct DLL is used to prevent errors.

From OWrite version 3 onwards, the version number returned by
$components.OWrite.$version will be xx.yyy. The xx portion stands for the 2 digit Studio
version 52 for Studio 5.2, 50 for Studio 5.0 or 43 for Studio 4.3 or better. The yyy portion of the
version number is the OWrite version number as a three digit value. For version 3.0.0 this will be
300. It is prudent for your libraries to check both the Studio version and the OWrite version to
prevent using the incorrect DLL. see sample code

Document Version Numbers
OWrite implements the static method OWrite.$docversion which returns the internal document
version of an OWrite binary. This method can be used to test if a document may require
additional conversion by the developer. The examples implement a conversion method that alters
the formatting around some calculated fields. A change that was prompted by the new version 3
hyper link formatting properties $linktextcolor and $linktextstyle. conversion example...

Page 20 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Page 21 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Advanced Font Handling
OWrite version 3 changes the way fonts are mapped when importing and exporting documents,
when pasting content from the clipboard and when mapping fonts between platforms. The new
font mapping functionality can also be used to limit the set of fonts that are available to the end
user and that OWrite will allow during import or pasting. In addition, OWrite now provides new
features that allows the displaying of font family and typeface names in way more consistent
with other word processors.

At that heart of the new font handling are two lists. A list of all available fonts build by OWrite
during startup, referred to from heron as the OWrite-Font-List, and the font map which can be
installed via the $setfontmap function, referred to from hereon as the OWrite-Font-Map.

The OWrite-Font-List
The OWrite-Font-List is returned by the static function

OWrite.$getfontlist(&lList,cCurFont,bCurBold,bCurItalic,bApplyMap,
lSizeList)

or by the equivalent OWrite document object function
OWriteRef.$getfontlist(&lList,cCurFont,bCurBold,bCurItalic,bApplyMap,
lSizeList)

List Columns

The list returned by $getfontlist consists of three main columns:

Family: the fonts family name

Typefaces: sub-list of font type-faces consisting of four columns

Typeface: The typeface name, i.e. Bold, Italic, Regular, Condensed, etc
OmnisFontName: The Omnis equivalent font name
OmnisStyleBold: The Omnis font bold state used with OmnisFontName
OmnisStyleItalic: The Omnis font italic state used with OmnisFontName

Used: flag that indicates if the font is used or has been used in the OWrite non-visual, window
or remote form object session. All used fonts will appear at the top of the list, separated by an
empty divider row. This column is only populated when the $getfontlist function is called via
a reference to an OWrite document object.

$getfontlist - Example of use:
OWriteRef.$getfontlist(ivFontList,OWriteRef.$curfont,OWriteRef.$curbold,OWr
iteRef.$curitalic,kTrue,ivSizeList)

$getfontlist - Parameters:

lList: The variable that is to receive the list of fonts. When calling this function on the web-
client, due to web-client limitations, the list must be an instance variable and the lists name
must be specified using the nam() function.
OWriteRef.$getfontlist(nam(ivFontList),...)

cCurFont: The current font as returned by $curfont. Passing this information in conjunction
with the next two parameters will select the appropriate font family and typeface in the

Page 22 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

returned list.

bCurBold: The current bold state as returned by $curbold. See cCurFont.

bCurItalic: The current italic state as returned by $curitalic. See cCurFont.

bApplyMap: If kTrue is passed for this parameter and the OWrite-Font-Map was loaded with
the flag set to limit OWrite fonts, the list returned
by $getfontlist will only include fonts that are
specified in the OWrite-Font-Map and that exist
on this platform. Passing kFalse for this
parameter will return all available fonts
regardless of the settings for the OWrite-Font-
Map.

lSizeList: The list returned by the method will
contain the font heights for all installed fonts, or
all fonts specified in the OWrite-Font-Map if
bApplyMap is true. Heights are specified in the
font’s unit size. The unit size is also included
with the data.

When using the OWrite-Font-List in the user
interface for selecting fonts and typefaces, the three columns OmnisFontName, OmnisStyleBold
and OmnisStyleItalic in the typeface list are used to apply the chosen font and typeface via the
OWrite properties $curfont, $curbold and $curitalic. The Format Font window has been updated
to use this new interface for selecting fonts.

Internally, the OWrite-Font-List consists of additional information such as postscript names for
all font type-faces. This information is not available to developers but is used to find unknown
font names when font names are assigned via the $curfont property, or when documents are
imported or pasted from the clipboard via RTF. This means that it is perfectly valid for example
to assign ArialMT (the postscript name for Arial) to $curfont. OWrite will convert this to the
Omnis equivalent font name Arial.

The OWrite-Font-Map
The OWrite-Font-Map is not new to OWrite version 3. In the past it was used to map font names
when loading documents that were created or edited on other platforms. The font map list had to
provide rows of font names where each row provided three columns for the three supported
platforms, Macintosh, Windows and Linux.

In version 3, the font map is essentially still a list, but the columns of the list are no longer linked
to a specific platform, and the number of columns are no longer limited to three.

THE PURPOSE OF THE NEW FONT MAP

- Provide alternative font names for exporting to HTML

- To map unknown font names from other platforms or programs

- To limit OWrite to the specified set of fonts

ALTERNATIVE FONTS FOR HTML EXPORT

Page 23 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

It is common practice when specifying font family names in HTML to specify a list of
alternative names in a comma separated list. A browser will typically choose the first font in that
list which is available on the client's platform. When exporting OWrite documents to HTML,
OWrite will use the line from the map that contains the font name to be exported in the left-most
column of the map. For example, if row two contains the font in third place and row five
contains the font in second place, OWrite will pick row five as the list of font names for export to
HTML.

MAPPING UNKNOWN FONT NAMES

When loading or importing documents from other platforms or programs or pasting content from
the clipboard, the documents or content may contain font names unknown to this platform.
OWrite will first search for the font in the system, comparing it with the systems family and
postscript names of each font and typeface. If this search fails, OWrite will consult the font map
and use the row that contains the font name in the left-most column (see 'Alternative Fonts...'). If
this second search also fails, OWrite will use the first row in the map to choose the first available
font starting from the left. If no font-map is provided, OWrite will use as its default font the font
specified in the $font property.

LIMIT OWRITE TO THE
SPECIFIED FONTS

When loading the font-map via the
method $loadfontmap one can tell
OWrite to limit the fonts that can be
used in a document to the fonts
specified in the map. We especially
recommend this for JS-OWrite.
When loading OWrite documents or
importing documents via RTF or
pasting content from the clipboard,
OWrite will only allow fonts
specified in the map. If fonts are
encountered that are not specified in
the map, OWrite will use the fonts
specified in the first row of the map
and pick the first one that exists on
the clients system.

The same limitation is applied when calling $getfontlist to fetch the list of available fonts. If the
OWrite-Font-Map is set to limit the fonts and the $getfontlist function is called with parameter
bApplyMap set to kTrue, the OWrite-Font-List will populate the interface list with only fonts that
are present in the OWrite-Font-Map.

Page 24 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Headers & Footers
Page headers and footers are new to version 3. This section describes their basic behaviour and
programing features.

Header & Footer options
By default, the headers and footers feature is enabled. It can be disabled by setting the property
$headfootenabled to kFalse. If disabled, the user will not be able to see or modify headers and
footers. It is a property of the window control and is not stored with the document.

There are a number of header and footer options. The examples implement these options in the
Document section of the OWrite Formatting Palette.

Header Margin ($headermargin), specifies the distance between
the header and the top edge of the paper as centimetres or inches.
This is a document specific property and is stored with the
document data.

Footer Margin ($footermargin), specifies the distance between
the header and the top edge of the paper as centimetres or inches.
This is a document specific property and is stored with the
document data.

Different Odd & Even ($headfootoddeven), if true, creates
different headers for odd and even pages of the document. This is a
document specific property and is stored with the document data.

Different First Page ($headfootfirstpage), if true, creates
different header and footer for the first page. This is a document
specific property and is stored with the document data.

All-in-all, there are six possible headers and footers (three of each). A header and footer for the
first page, a header and footer for subsequent even pages, and a header and footer for subsequent
odd pages.

Interface Behaviour and Appearance
Headers and footers can only be
viewed and edited in the page layout
mode ($pageview is set to
kWriViewPageLayout).

When a user moves the mouse across a header or footer, OWrite indicates the header/footer
location by a light gray box with a white inner area where the header/footer content is positioned
(image above).

This box remains when the header/footer is selected for editing. The examples have been
programmed to open a special formatting palette while editing a header or
footer. This palette implements buttons to insert special date, time, page
number and page count objects. It also includes buttons to move to the next
or previous header or footer (see image to the right).

Page 25 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

NOTE: It is not possible to edit headers or footers of a type for which there are no pages in the
document.

When OWrite creates headers and footers in a document, OWrite automatically creates a new
style named Header & Footer.

Selecting Headers & Footers
It is possible to procedurally set the selection inside a header or footer. There are new
kWriSelect... constants that can be used with the $setselection method in place of an object ID.

kWriSelectHeadEvenDef: Used as the object ID with $setselection, it sets the selection in
the even page and default page header.

kWriSelectFootEvenDef: Used as the object ID with $setselection, it sets the selection in the
even page and default page footer.

kWriSelectHeadOdd: Used as the object ID with $setselection, it sets the selection in the
odd page header

kWriSelectFootOdd: Used as the object ID with $setselection, it sets the selection in the odd
page footer

kWriSelectHeadFirst: Used as the object ID with $setselection, it sets the selection in the
first page header

kWriSelectFootFirst: Used as the object ID with $setselection, it sets the selection in the first
page footer

kWriSelectHeadFoodNext: Select next header or footer. From the current selection point,
this option will select the next footer or header in line.

kWriSelectHeadFoodPrev: Select previous header or footer. From the current selection
point, this option will select the previous footer or header in line.

Example:
Do OWriteRef.$setselection(0,0,kWriSelectHeadEvenDef)
;; sets the cursor at the beginning of the default/even page header

Header and Footer Object Types
There are two object types ($curobjtype) related to the implementation of headers and footers.
One is the type for a header and footer object it self, the other for an info object that can be
placed inside a header and footer and show information such as the current time or page count.
The info object has a subtype that indicates its function. You use the following constants when
inserting an info object.

kWriObjTypeHeadFoot: Document header or footer.

NOTE: You cannot insert objects of this type. They are automatically created by OWrite.

kWriObjTypeInfo: Document info object such as page number or count. You can insert info
objects of the following sub types.

kWriObjTypeInfoPgCnt: Displays the total page count of the document
kWriObjTypeInfoPgNum: Displays the current page number
kWriObjTypeInfoDate: Displays the current short date (formatting specified by #FD)

Page 26 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriObjTypeInfoTime: Displays the current short time (formatting specified by #FT)
To insert an info object you use the $::insert message and specify the subtype as the second
parameter. The property $curobjdata returns one of these constants.

Example:
Do OWriteRef.$::insert(kWriObjTypeInfo,kWriObjTypeInfoDate)

The info objects will export to RTF as compatible MS Word fields.

Printing
When printing a document directly using the OWrite $::print() method, headers and footers will
be printed as they appear in page layout view. When printing using an Omnis report and OWrite
report object, the properties $ignorepos and $headfootenabled must both be set to kTrue, for
headers and footers to print.

Exporting & Importing
OWrite will currently only export headers and footers to RTF. There are no plans to export them
to plain text or HTML. The importing of headers and footers via RTF is currently not supported
and any headers and footers will be skipped.

Page 27 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Data Merging
As already touched on in a previous section, the most important OWrite feature is the way in
which Omnis data from a database or other sources can be merged with OWrite document
content. OWrite provides the Calculated Field, the Calculated Picture, the Text box and the
OWrite Table object, all of which can be used to merge Omnis data in different ways.

The Calculate Field is a simple in-line object that can be used to merge text based data in the
current paragraph. There is no limit to the amount of data that is merged via this object as long as
it is text and does not contain any objects such as pictures or tables, but it may consist of multiple
paragraphs. The data that is returned can be RTF based which allows the individual formatting of
words or phrases within the text that is to be merged.

The Calculated Picture is an OWrite object that can merge picture data. The picture data must be
Omnis picture data as accepted by the Omnis Picture data type or it can be raw PNG or JPEG
data provided by a binary variable (requires version 3.5.0). OWrite currently does not support
any of the other raw image formats that are supported by Omnis. OWrite picture objects can be
formatted as in-line objects, or floating objects that cause text to wrap around the object in
various ways, or as background objects that are positioned behind the document’s text.

The OWrite Text box is useful for containing merged text data, which may consist of multiple
paragraphs, within the rectangular area of the text box. A text box can be formatted just like a
picture object so that the document’s text wraps around the text box or is positioned behind or in
front of it.

The OWrite Table Field is used for displaying Omnis list data. This object is documented in
greater detail in the next section.

The calculated field, calculated picture and the text box have properties for assigning an object’s
internal name (see $curobjname), the display text or icon ID for picture objects when a document
has not been evaluated (see $curobjdisplay) and the calculation for merging data (see
$curobjcalc).

A document is evaluated by setting the property $evalcalcs to true. At this point, OWrite will
evaluate, in turn, the calculations of all the OWrite objects and replace/display the returned data.
A already evaluated document can be populated with new data by simply assigning kTrue to
$evalcalcs a second or subsequent time.

By default, all calculations will be evaluated within the instance context. By context we mean
where we look for variables if we encounter variable names within the calculations, and by
instance context we mean the current window instance if we evaluating a document using the
OWrite window object, or the object instance if we are using the OWrite non-visual document
object. It is possible to create an object class and set as its super-class the external OWrite
document object. When evaluating documents using this object, all calculations will look for
variables or any notation that begins with $cinst inside the object class.

Note: To ensure correct behaviour in all situations, all instance variable names should be
prefixed with $cinst. Our testing has indicated that when using object classes this is the only way
to ensure correct behaviour across all supported versions of Studio.

However, sometimes it may not be desirable to evaluate calculations against the instance context

Page 28 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

of the non-visual object or window object, regardless of whether the document is loaded in a
window object or non-visual object. Perhaps you intend to have just one class that deals with all
document evaluation. To cater for this situation, OWrite provides the property $evallocal.
Assigning this property to true will change the OWrite context from the instance context to the
local context. By local context we mean the context of the method that will assign $evalcalcs to
evaluate the document. This means one can refer, in calculations, to local variables of the
method, instance variables of the class instance that owns the method, or task variables of task
instances that own the class instance of that method. This would be especially useful if one wants
to use table classes to evaluate documents as the table class could encapsulate both the code to
fetch data from a database and the code to handle the data merging of OWrite documents.

As already discussed in the section “OWrite Basics”, OWrite objects can be inserted using the
$::insert() method. When inserting objects that can be used to merge data, the second parameter
for the insert method is of special interest as it can be used to specify the object name, display,
the calculation and the click calculation, using the special syntax
name~display;data_calc~click_calc. For example, the line
Do refOWrite.$::insert(kWriObjTypeCalc,
”fldName~Client Name;$cinst.ClientName~$cinst.$showDetails(’ClientName’)”)

would insert a calculated field with the internal name “fldName”, the display text “Client
Name”, the data calculation “$cinst.ClientName” and the click calculation
“$cinst.$showDetails(’ClientName’)”.

Page 29 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

OWrite Tables
OWrite tables are an excellent medium for presenting Omnis list data. As well as the common
standard header rows, OWrite tables provide footer rows that can display subtotal and total
values, special frame options give the user effective control over the table appearance, and
powerful table functions greatly simplify the more complex tasks. Of course, tables cannot only
be used to present Omnis list data. They are just as useful for organising and presenting static
content or are a useful tool for WYSIWYG label designers.

Tables are added to a document using the $::insert() method.

Table Row Types
As already mentioned, an OWrite table can consist of header rows, footer rows and normal rows.
The following is a brief description of each row type.

Header Rows (kWriTblRowHeader)
Typically, header rows would not display data from an omnis list. They may simply provide
column headers, or other related data. However, a header cell can be given calculations that can
refer to Omnis data outside the list, or calculated fields can be directly inserted into a header cell
which refer to such data.

Footer Rows (kWriTblRowFooter)
One good use for footer rows is to display subtotals and totals at the end of each page. For this
purpose OWrite provides a special table function that can be assigned to a footer cell’s
$curobjcalc property. The function $tables.$total() displays either subtotals or totals in the
appropriate places. It takes a variable number of parameters. You can specify one or more cell
names (the name assigned to $curobjname), or the notation table_name.cell_name to reference
cells in other tables. In the above example, the table name was specified together with the table’s
calculation in parameter two of the $::insert method. The final parameter specifies the number of
decimal places or a jst() formatting string such as “N2,” for the display of the result. The
function will total/subtotal the results of all calculations of the provided names in previous rows
or tables.

Normal Rows (kWriTblRowNormal)
A table’s normal row, also referred to as a data row. Cells within this row type can be used to
display data from list columns by assigning a calculation to the cell’s $curobjcalc property.

Linking a Table to an Omnis List
A table can be given a standard Omnis calculation that returns an Omnis list or the name of an
Omnis list variable (see $curtblcalc).

Important: If your list is an instance or task variable and your table calculation returns the name
of the list, OWrite will operate directly on the instance/task variable. If your table calculation
returns the entire list, Omnis will operate on a copy of that list and you must declare an instance
or task variable called OWRITE_TMP_VAR of type binary. OWrite will use this variable to
store the list so that Omnis calculations can evaluate against it.

When a document is evaluated (see $evalcalcs), OWrite will make sure that the table has

Page 30 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

sufficient data rows (kWriTblRowNormal) to accommodate all of the list’s rows. If need be,
OWrite will add additional data rows. This action may result in additional header and footer rows
being created at page boundaries. This is the only time OWrite will create header and footer
rows. When editing a document, header and footer rows will not respect page boundaries and
behave in the same way as normal rows. Header and footer rows are only intended for tables that
display Omnis list data. Documents that have been evaluated and contain tables with headers and
footers should always be edited in OWrite’s single page mode (see $papercontinuous) which is
explained in mode detail later on.

As well as assigning a table calculation, each cell in a data row also requires a calculation. Any
Omnis functions or notation can be used in the calculation as long as the calculation returns
number, text, RTF or picture data. To refer to a column in the Omnis list you use the syntax
$ref.ColumnName ($ref refers to the list returned by the table calculation).

If OWrite needs to add additional data rows during document evaluation, the last table row of
type kWriTblRowNormal is used as the template for all additional rows that are added to the
table.

Page 31 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Example:

Let us assume we have a contacts list in a file class or database table called “fClients” and the
contacts list is called “Contacts”. The list has the columns “Name”, “EMail” and “Phone”.

In order to display this list we would need to create an OWrite table with a header row and a data
row with three columns to display the three list columns. This table would be our template for
displaying all of the list’s data. When the document is evaluated and our table grows to
accommodate the list data, our header row will be repeated at the top of each page.
;; Insert a three column table with two rows (one header and one data row).
;; (after the insert the table will be selected and $curtblid will be set)
Do refOWrite.$::insert(kWriObjTypeTable,”Contacts~fClients.Contacts”,
 kWriBordLine,kWriLineSolid,kBlack,lineSizeInPoints,
 columnCount,rowCount,columnWidth,rowHeight)

;; Make the first row a header row as new rows default to kWriTblRowNormal
;; - select row 1
;; (to select cells or rows in a table one specifies row*65536+cell)
Do refOWrite.$setselection(1*65536,1*65536,refOwrite.$curtblid)
;; - assign the row type
Do refOWrite.$curtblrowtype.$assign(kWriTblRowHeader)

;; insert the column header text “Name”, “E-Mail” and “Phone” in each
;; header cell
;; - select cell 1 in row 1
Do refOWrite.$setselection(1*65536+1,1*65536+1,refOWrite.$curtblid)
;; - insert the column header text in the cell
Do refOwrite.$::insert(kWriObjTypeText,”Name”)
;; - select cell 2 in row 1 and insert column header text
Do refOWrite.$setselection(1*65536+2,1*65536+2,refOWrite.$curtblid)
Do refOwrite.$::insert(kWriObjTypeText,”E-Mail”)
;; - select cell 2 in row 1 and insert column header text
Do refOWrite.$setselection(1*65536+3,1*65536+3,refOWrite.$curtblid)
Do refOwrite.$::insert(kWriObjTypeText,”Phone”)
;; Set the calculations for the cells in row two
;; The calculation will consist of the notation $ref which refers to the
;; Omnis list, and the column names “Name”, “EMail” and “Phone”
;; We will also assign an internal name to each cell
Do refOWrite.$setselection(2*65536+1,2*65536+1,refOWrite.$curtblid)
Do refOwrite.$curobjcalc.$assign(”$ref.Name”)
Do refOwrite.$curobjname.$assign(”Contacts_Name”)
Do refOWrite.$setselection(2*65536+2,2*65536+2,refOWrite.$curtblid)
Do refOwrite.$curobjcalc.$assign(”$ref.EMail”)
Do refOwrite.$curobjname.$assign(”Contacts_EMail”)
Do refOWrite.$setselection(2*65536+3,2*65536+3,refOWrite.$curtblid)
Do refOwrite.$curobjcalc.$assign(”$ref.Phone”)
Do refOwrite.$curobjname.$assign(”Contacts_Phone”)

Now our table is ready to be evaluated.

Split Table Rows
From OWrite version 3 onwards, when merging list data with an OWrite table, it is possible to
have table rows split across page boundaries if a table row contains at least two rows of text.

Page 32 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

This feature only works when evaluating an OWrite table object that is linked to an Omnis list
and it is not a general feature during the editing of a document. Editing a row that has been split
will result in unpredictable behaviour. It must only be used as an aid for producing documents
for viewing or printing. For a row to be split across pages you must set the property
$curtblrowevalcansplit to kTrue for each row that you allow to be split. However, it is possible to
edit documents with split table rows if the document is place into the single page mode as
explained in the next section.

Editing Evaluated Documents
One of the strength of OWrite documents is the ability for users to edit a document after it has
been merged with data. Something that is not possible with Omnis reports. It empowers users to
make final tweaks to a merged document. However, as already mentioned, when tables with
headers and footers are edited after a merge, changing the content of a table’s cell may alter the
position of the rows and any headers and footers that were added by OWrite during data
merging, may no longer line up with the page boundaries.

In OWrite version 3 we have updated the property $papercontinuous to respect evaluated
documents in relation to page boundaries and table headers, footers and split rows when
switching to or from the continuous paper mode.

When $papercontinuous is turned on (single-page mode) and a table is subsequently evaluated,
no extra headers and footers will be inserted and table rows will not be split across page
boundaries as the table will be contained within a single extended page.

When turning off continuous paper (multi-page mode), OWrite will insert the appropriate
headers and footers and split rows where page breaks are encountered. IMPORTANT: The code
that assigns $papercontinuous must have access to the same variables as the code that originally
evaluated the document (assigned $evalcalcs) so that OWrite can calculate the content for the
extra headers and footers that it needs to insert.

In contrast, when an evaluated document is switched from multi-page mode to single-page mode,
OWrite will strip any page boundary headers and footers that were added, and merge any rows
that had been split.

This feature allows end users to edit evaluated tables in single-page mode without adversely
effecting split rows or headers and footers that will be inserted around page boundaries in multi-
page mode. When the user has finished editing, $papercontinuous can be turned off to paginate
the modified document for printing or exporting. The only limitation is that the user cannot edit
headers and footers that are inserted when switching to the multi-page mode as they will not be
available in the single-page mode.

IMPORTANT SIDEEFFECTS (new to version 3)

Evaluated documents save all result data for the table and all its cells. This is done so documents
can be saved in single-page mode, allowing OWrite later on to calculate subtotals and other
content for headers and footers that are inserted when switching to multi-page mode for printing
or exporting.

To strip all result data you must save the document with parameter three (bMakeDataPermanent)
set to kTrue. This will permanently fix all cell content and all other calculated fields without the
possibility of re-evaluating the document.

Page 33 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Example:
Do OWrite.$savedata(binary,kWriFmtDefault,kTrue)

In addition, the $papercontinuous and $evalcalcs properties are now properties of the document
and will also be saved and loaded with the document data.

STATIC TABLES (new to version 5)

Static tables (tables that have NO list attached) will now paginate correctly when using the
$papercontinuous feature in order to edit tables in a single flow and then paginate the tables post-
edit. Turning off $papercontinuous will produce correct table headers and footers and split table
rows if the appropriate table properties are set, i.e. $curtblpageheaders, $curtblpagefooters and
$curtblrowevalcansplit are set to kTrue.

For the process of creating, evaluating, editing and previewing document templates that contain
static tables we recommend the following steps:

1. create document in $papercontinuous mode

2. evaluate document

3. edit post-evaluated document in $papercontinuous mode

4. preview paginated document by turning off $papercontinuous mode

We recommend that evaluated documents that contain tables for which headers and footers have
been generated around page breaks and/or table rows have been split, are previewed with the
document disabled, i.e. $readonly.$assign(kFalse). However, the order of assigning
$papercontinuous and $readonly is important as $readonly prevents programmatic changes to the
document (including changes caused by $papercontinuous)

When editing the evaluated document, first set $readonly to kFalse, then assign
$papercontinuous to display the document in a continuous flow, which will remove the inserted
headers, footers and merge split table rows, so the table can be edited without destroying the
integrity of the table.

Example:
;; clear $readonly first so $papercontinuous can make changes
Do ivEdit.$readonly.$assign(kFalse)
Do ivEdit.$papercontinuous.$assign(kTrue)

To preview document post-editing, turn off $papercontinuous first and then disable the editing.

Example:
Do ivEdit.$papercontinuous.$assign(kFalse)
Do ivEdit.$readonly.$assign(kTrue)

Page 34 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Multi-Selection Find
From version 3 onwards, it is possible to search a document for a matching phrase or for the
individual words within the search string, and have OWrite highlight all matching content within
the document. The OWriteSearch object has a property called $multiselection which turns on this
feature and the property $multiwordfind which specifies if we are searching for the exact phrase
or individual words. If $multiselection is set to kTrue, calling OWriteObject.$findinit will search
the entire document and store matching content in a list. The property $multiselectlist will return
a list with the following columns:

• FirstSel - The start of the selection in kWriSRDefault range

• LastSel - The end of the selection in kWriSRDefault range

• ObjID - The ident of the object or zero if not inside an object

• PageNumber - The page number of the selection

• RowText - The plain text of the row (only when using $getresultlist, see below)

It is also possible to fetch the result
list using the new method
OWriteSearch.$getresultlist(&lList,i
SelRange,bIncludeRowText). Using
this method one can specify the
kWriSRxxx range constant and if to
include the plain text of the entire
row in which the match was found.

The current line of the returned list
will be set to the match that is
currently focused. You can move
through the matches by calling the
method OWriteObject.$findnext(),
just as before. Alternatively, you can
change the current line in the result
list and assign the list to
$multiselectlist or call the method
$setresultlist.

There are additional properties for
the OWriteSearch object that allow
you to control the appearance of the multi-selection highlight. These are:

• $multiselectbackcolor - The background fill colour that is used to highlight all matches
other than the current focused match.

• $multiselecttextcolor - The text colour that is used to highlight all matches other than
the current focused match.

• $selectbackcolor - The background fill colour that is used to highlight the current
focused match.

Page 35 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

• $selecttextcolor - The text colour that is used to highlight the current focused match.

The OWrite examples implement a new quick find interface in the main Document Manager
window (wOWrite). Simply press command-F (ctrl-F on windows) when the main edit window
is in front and a panel will become visible just above the OWrite ruler. See the new window class
wFindMultiSelect.

Associated with this feature is the event evMultiFind which is generated when OWrite either
shows or hides the multi selections. The event parameter pSelectionShown is kTrue, if the editor
shows multiple selections, otherwise it is false. The examples use this event to hide the quick
find panel. This event is required as OWrite will automatically hide the multi selection when the
user clicks in the editor. evMultiFind example...

Page 36 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Plain Text Analyzes
It is sometimes much easier to analyze text content using plain text. Especially when using third
party tools that require the provision of plain text. However, when saving an OWrite document
as plain text it is virtually impossible to relate the position of a word or sentence in the plain text
with the same word or sentence in the rich OWrite content. This is especially true when the
document contains complex objects such as tables or text boxes.

In OWrite version 3 we have introduced a feature that allows OWrite to create a plain text map
so that when calculating the selection range of a word or sentence using the plain text copy of a
document, the same selection range can be used in the OWrite document.

To use this feature, the OWrite document must first be saved as plain text using the new option
kWriTextCreateMap. After that, the selection range constants kWriSRPlainText can be used to
tell OWrite to use the plain text map during a call to $setselection.

Example:
Do OWriteRef.$savedata(kWriFmtText,text_var,kFalse,kWriTextCreateMap,kTrue)
...
Do OWriteRef.$setselection(10,20,0,kWriSRPlainText)

When using kWriSRPlainText to set the selection, the following errors may occur
kWriErrNoTextMap (-14): Attempt to use kWriSRPlainText with no text map

This could mean that you have not saved the plain text with the option
kWriTextCreateMap

kWriErrEndOfTextMap (-15): OWrite has reached the end of the text map.
Document content must be out of sync.

This could mean that the plain text or rich text content was altered since the last save.

NOTE: The content of headers and footers is not included in the plain text map.

Page 37 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Web Client
The web client implementation of OWrite does not support all the functionality of the fat client
version, and some functionality has been implemented in another way. This section explains the
limitations and differences.

Limitations
• $savedata and $loaddata only support plain text, RTF and OWrite binary formats.

• Calculated fields cannot be evaluated on the client. Documents must be evaluated on the
server and send to the client in evaluated form.

• Calculations that are entered for calculated fields cannot be validated.

• Spell checking is not supported.

• OWrite static methods are not supported, but many of the OWrite static method have
also be implemented as method of the remote form object.

• The following methods are not supported, $print, $spell, $findinit, $findnext and
$replace. Future versions may implement $findinit, $findnext and $replace.

Differences
The web client control primarily uses the instance variable specified by $dataname to load and
save documents. The methods $savedata and $loaddata can still be used to save a document to a
different format that is supported by the web client control.

Omnis Web Client does not support menus or the pop-up menu command. In order to provide a
reasonable interface the OWrite control provides a new method $popupmenu() that can be called
to pop-up a menu. The example interface demonstrates how this method can be used to
implement standard and context menus on the web client.

In the fat-client, measurements must be given in centimetres or inches according to the
$root.$prefs.$usecms property. This property does not exist on the web client and we now use
the OWrite property $showcms to evaluate measurements.

The web client does not support string tables. Please see the section on translations in this
document.

Page 38 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Designing JS-OWrite
Introduction
This chapter introduces the steps required to add JS-OWrite to your application. If you familiar
with OWrite desktop (if you are not, it may be of benefit to quickly read through the chapter
“Designing OWrite”), you will have a head start as many of the properties, methods and events
are the same in JS-OWrite. However, there are some important differences. Firstly, as with
OWrite desktop, you will be able to attach editor properties directly to interface controls, except
you will have to use the special property controls provided by JS-OWrite. Secondly, not all
OWrite desktop properties, methods and events are supported by JS-OWrite, some work
differently and JS-OWrite has added some new methods and properties.

NOTE: Before you continue, make sure you have followed the installation instructions in the
“Welcome” chapter, before opening the example library. We also recommend that you read the
section related to Advanced Font Handling in the ‘Designing OWrite Chapter’ and refer to
$loaddata and $loadautosave.

Examples
The most important classes that implement the JS-OWrite functionality can be found in the
library’s “OWrite Java Script” folder which implements a JS version of our document manager.

rfOWriteJSDemoFullSize - implements the client interface for the JS OWrite example. Click the
class name to test the form or click here to view the code.

rfOWriteSuper - the super-class for all the above demo forms. It implements most of the code
that handles the interface and its events.

objOWriteEval - is an object class that implements the merging of document templates with data
from the sample database. You will find out more about data merging in the next section.

The various remote forms that start with “rfOWFormat” in their name implement the sub
windows used for displaying document details such as current paragraph and style info etc. The
controls contained within these forms are special OWrite Property Object controls which can be
linked to the various OWrite properties for displaying and manipulating document content.

NOTE: To select calculated fields without running them, make sure the OWrite document has
the focus than hold down the CTRL key on Windows or CMD key on Macintosh and click the
calculated fields.

Data Merging Examples
The example library provides a number of documents that demonstrate the power of the OWrite
data merging feature. These documents can be found in the OWrite group of documents and their
name starts with “Example”

The important server based class involved in data merging is the object class objOWriteEval.
This class inherits the external non-visual OWrite document object. Consequently, this class
inherits all the OWrite properties and methods that are relevant for the programmatic
manipulation of documents without the overhead of a visual interface. We recommend the use of

Page 39 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

such an object class for implementing all required data merging functionality.

Typical data merging involves loading an OWrite document into the object and merging it with
data by assigning $evalcalcs to kTrue. This evaluates all its embedded calculated fields, pictures
and tables. The document is then saved and returned to the client for display and further editing.
Calculations assigned to OWrite objects can be any valid Omnis calculation including calls to
notation/custom methods as long as they are available within the context of the objOWriteEval
instance and return appropriate data for merging.

Browser Compatibility
We cannot guarantee full compatibility across all browsers. Our testing has mainly been carried
out using Google Chrome and we recommend this browser for above all others. Other browsers
that we have tested and which only display minor issues are Firefox, Safari and Microsoft
IE/Edge. There are some major problems with Safari in iOS. We are still investigating possible
solutions.

The following desktop browsers have been tested:
On Windows 7 & 10: Microsoft Edge, Internet Explorer v11, Chrome, Opera and Firefox.
On Macintosh: Safari, Chrome, Opera and Firefox.

The following tablets have been tested with some success, but more work is required:
Surface Pro 2017 - Windows 10: Microsoft Edge (works best)
Galaxy Tab S2 - Android 7.0: Firefox (intermittent focusing issues)

PHP Spell Checker (v5.0)
In version 5, we have added PHP based spell checking to jsoWrite. There is a new property
called $spellcheckerurl which is a property of the control and specifies the URL of the PHP
script on the server. The URL may provide additional parameters for the PHP script, such as
spell checker initialisation options. The jsoWrite document manager examples include a basic
PHP script that you can modify for your own requirements. The script’s URL must provide a
number of parameters for additional functionality such as adding words to a server dictionary, or
spell checking in a language other then US/UK English. Below is a list of all the parameters
supported by the provided script and jsoWrite kernel:

Known Issues
This section lists issues that we are aware of which do not require reporting unless you feel you
may have encountered a variation of the problem description shown here. We are working hard
to resolve these a.s.a.p.

1. Performance issue when resizing or moving an image when text has to wrap around it.

2. When clicking calculated field with command held-down the click calculation is
executed if the document did not have the focus.

Contents
JS-OWrite Basics - brief introduction to the client and server objects.

Your First Form - set of instructions for designing a basic functional JS-OWrite form

Page 40 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

JS-OWrite Quick Reference - short reference of most important properties and methods.

Page 41 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

JS-OWrite Basics
Client Controls
The JS-OWrite client implementation consists of two client controls. The JS-OWrite editor-
control and the JS-OWrite property-control. The property-control is used to build an interface
that directly communicates with the editor-control to manipulate document content without
having to write any Omnis code. The property-control has a property called $property which lists
all the editor-control’s properties that can be manipulated. Depending on which property the
property-control interfaces with, the property-control will create different modes of input on the
client. The property-control has additional properties that allow one to manage the appearance,
i.e. labels, tool-tips and icons. For a full description please see the section
JS-OWrite Quick Reference.

Essentially, these two controls are all that is needed to create a sophisticated client interface for
editing OWrite documents.

Server Object
There are a number of things that the client controls cannot do because some tasks are difficult to
accomplish in Java script or would increase the size of the script too much or because resources
are required that only exist on the server.

For example, the client control cannot create new blank documents. Generally, documents will
be stored within a database on the server, so the creation of new documents was considered a
server function that can be carried out by the OWrite non-visual document object. We
recommend however that one or more new document templates are prepared during development
or by your users that can readily be loaded by the client, whenever a new document is required.
Document templates could be stored in your database as Omnis lists. See $savedata() for how to
save OWrite documents as Omnis lists. Document templates can contain pre-defined set of
document styles (new documents created by the non-visual component will only contain a single
default style called ‘Normal’). The examples demonstrate how new documents are created using
a document template from a database.

Another main server function is to export OWrite documents to alternative formats such as
HTML, RTF or to print PDF files. One reason for producing a PDF file from the document being
edited on the client may be so the client can print or save the document. This involves sending
the document to the server where it is loaded into the OWrite non-visual object for printing to
PDF. The resulting PDF file can then be displayed on the client for printing or saving on the
client. The JS-OWrite example remote form demonstrates how this is achieved using the Brainy
Data PDFDevice which can produce PDF documents in memory and return them to the client
without the need to access the hard-disk. Exporting OWrite documents as HTML is useful if
documents are to be send as e-mails. Alternatively, documents can be saved as RTF if they are to
be opened by other word-processors or editors.

The final main server function is the merging of data. As data is mainly accessible on the server,
the document to be merged has to be send to the server and loaded into the OWrite non-visual
object to execute the merge. Once data has been merged, the document can be returned to the
client, stored in the database or converted to alternative formats as discussed above.

Page 42 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Your First Form
In this section we will create a very basic editor with a few formatting options to demonstrate the
minimum steps required for a functional OWrite Form. See OWriteSimple example.

Create the required classes
First create a remote form, a remote task and an object class and name them appropriately. We
named ours rfOWriteSimple, rtOWriteSimple and objOWriteSimple respectively. Make sure
$designtaskname of the remote form is set to rtOWriteSimple and that the objOWriteSimple
class inherits the external OWrite document object.

Page 43 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Place the OWrite object
Now modify the remote form and drag the OWrite Form Object from the Component Store onto
the remote form. Set the object’s name and appearance. We called ours ‘OWrite’ and set the
border to single inset.

Creating a new document
Code a server method for creating a new document. For this we require two instance variables.
One of type list for storing the document data and one of type Object that is an instance of our
objOWriteSimple class. This method we must call from $construct.

Page 44 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

We can now set the object’s $dataname to that instance variable and create the client method to
load the document. The first document (following construction) cannot be loaded until the
evFirstLoad event is received by the OWrite $event method ($event must be set to be executed
on the client). Make sure you enable the evFirstLoad event in the OWrite $events property.
Note: OWrite does not automatically load the data from the instance variable as the developer
may need to pass additional information such as auto-save information.

You should now be able to test the form and enter some text.

Add text formatting controls
Let us now add some interface controls for changing the text bold, italic and underline states.
From the component store drag the OWrite Property Object to the remote form and apply the
appropriate icon, tool-tip and property name.

Repeat for italic, underline, strike-through, etc.

Page 45 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

We can now change the typeface of our text.

The properties so far were all individual boolean properties that required a property control each
(when placed together, our example icons make them appear as a single bar of buttons). Some
properties such as alignment properties are enumerated properties with multiple settings. Such
properties require a single property object that specifies multiple values, tool-tips and the first
icon out of a sequential set.

Page 46 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Add style and font controls
Finally we will add style and font interface controls. Our document style control ($curstylename)
and font size control ($curfontsize) only require to be linked to the property $curstylename and
have a fixed $ctrlwidth. OWrite will do the rest. However, our font control requires a list of
available fonts that is set as its $dataname. Thus we also require a server method that builds the
list of fonts which is called from $construct.

Page 47 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Saving the document
Finally, we must add a control to save our document. For this we use a standard Omnis button
control. Make sure to set the $event method to execute on the client and call $savedata() on the
click event. Our button can be enabled and disabled as the document is modified or saved
respectively. When a document is first modified, OWrite will generate the evModified event, at
which point we enable the button and when we save the document we disable the button. Make
sure all the required events are enabled in OWrite’s $events property.
It is important to note that data is saved asynchronously so any code placed after the $savedata()
call would be executed before the data has actually been saved to the instance variable. OWrite
will generate an evSaveData event when the task is complete. At that point it will be possible to
call a server method to store the document or do whatever is required in your case. If an error
occurred during the save, the event evSaveDataError is generated instead.

Some final words
This section only covered the very basics of implementing JS-OWrite. Please also have a look at
some of the additional methods the non-visual document object implements and the additional
functionality implemented by the document manager examples.

Page 48 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

JS-OWrite Quick Reference
Property-Control Properties

$property: the name of the OWrite $cur… property, this must include the $
sign, i.e. $curstylename

$ctrliconid: the icon id for single state properties such as $curbold or the first
icon ID for multi-choice properties such as $curalign.

$ctrltooltip: the tooltip text for single state properties or tilde separated list of
tooltip text for multi-choice properties.

$ctrlvalue: typically used for multi-choice properties, this specifies a tilde
separated list of values, one for each of the choices that you would
like to make available. This list determines how many icons and
tooltip text items are required. for example:

$ctrlvalue = “0~1~2~3”

$ctrltooltip = “left~center~right-justified”

$ctrliconid = k32x32 13009 (#ICONS must contain multi
state icons with IDs 13009,13010,13011 and 13012 that
depict these options)

$ctrlwidth: typically used for standard text or number input, this specifies the
width of the actual input control in pixels (excluding labels)

$labelleft: specifies the label text to be placed to the left of the input control
(right justified within $labelleftwidth).

$labelleftwidth: specifies the width of the left label span in pixels. This property can
be used to help horizontally align input controls with different
length left labels.

$labelright: specifies the label text displayed to the right of the input control
(typically used for text such as units, i.e ‘cm’ or ‘pts’).

Client Methods
The following methods are or will be supported on the client:

$deleteautosave(autoSaveID)

Deletes the auto-save data associated with the given ID.

$getstylelist(outList)

Returns the list of document styles in the current document.

$getbookmarks(outList)

Returns the list of bookmarks in the current document.

$hasautosave(autoSaveID)

This method returns the date and time as a string if the specified auto-save exists,

Page 49 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

otherwise NULL is returned. This can be useful if the developer wants to compare the date
and time with the last successful save prior to calling $loadautosave.

$insert(objType,objData,insertPos,asyncId,asyncData)

This method can be called to insert plain text or objects (tables, text-boxes, pictures,
calculated fields and info fields). The web-client version of this method differs from the
fat-client version in that all attributes of an object to be inserted must be specified as part of
the object data when calling the $insert method. The following client-only methods have
been added to help with building the data required for complex objects such as tables.

$initparams(objType)
return a java-script object that can store information for the specified object type.
$addparams (obj, param, value[, attribute, value, ...])
adds the attributes to the specified object.
$addparamstblrow(tbl, rowNum, attribute, value[, attribute, value, ...])
assigns the specified attributes to a table row in a table object.
$addparamstblcell(tbl, rowNum, cellNum, attribute, value[, attribute, value, ...])
assigns the specified attributes to a table cell in a table object.
$addparamstblcellcontent(tbl, rowNum, cellNum, text[, attribute, value, ...])
assigns text content to the specified cell in a table object. Additional parameters can be
specified for setting style information.
Please refer to the examples for further details about inserting objects.

Note: This is an asynchronous operation, so the operation will not have been completed by
the time the function returns control to the Omnis code. When the operation has been
completed, the evAsyncDone event is generated.

objType the object type. One of the kWriObjType... constants.

objData the object data as described above

insertPos either kWriInsertOver which will replace the current selection, or
kWriInsertAfter which will insert after the current selection

asyncId passed through to evAsyncDone on completion

asyncData passed through to evAsyncDone on completion

$interfacevisibilitychanged(subFormName)

When using the JS-OWrite property controls to provide an interactive interface for the
editor, the controls can be placed on different sub-forms for different purposes. It is
assumed that only one sub-form is shown at a time in which case this method can be called
to limit updates to the controls shown in the specified sub-form (no need to redraw controls
that are currently not required).

$loadautosave(autoSaveID,autoSaveMinutes,userPrompt,fontSizes)

This method will load the specified auto-save data if it exists. The method returns kTrue if
the auto-save data was loaded, but if a prompt was specified the client may decline the
loading of the auto-save data in which case the method returns kFalse.

Page 50 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

autoSaveID Identifies the auto-save data to be loaded.

autoSaveMinutes This optional parameter specifies the auto-save interval in minutes.
A copy of the data is also stored locally when calling $savedata in
case the server save fails, which may require the client to
reconnect. (default is 5 minutes)

userPrompt The text to be presented to the client if auto-save data exists. JS-
OWrite will insert the date and time of the auto save if the text
contains a ‘$’ character.

fontSizes (v4.1) The list of font sizes returned by the server OWrite method
$getfontlist. If provided JS-OWrite will use the provided font sizes
to measure font heights so they are compatible with the fonts on the
Omnis server.

$loaddata(autoSaveID,autoSaveMinutes,theData,fontSizes,asyncId,asyncData)

This method will load the document that is stored in the instance variable that is assigned
to the JS-OWrite control’s $dataname property. The client does not support loading of
empty document data it is therefore recommended to prepare template documents using the
fat-client OWrite control that can be loaded when new documents are required. These
templates may contain a set of prepared document styles. Note that loading data is
asynchronous process thus when control is returned from calling $loaddata the data is
unlikely to have been loaded. JS-OWrite will generate the evFormatChanged event when
all data is loaded.

autoSaveID This optional parameter can specify an id that must be unique for
the document to be edited. This ID is used for storing local auto-
save data. Server connections can be fragile and the developer can
query the existence of auto saved data for a document when the
client re-connects and call $loadautosave instead.
Note: auto-save data must be deleted when a document has been
saved successfully.

autoSaveMinutes This optional parameter specifies the auto-save interval in minutes.
A copy of the data is also stored locally when calling $savedata in
case the server save fails, which may require the client to
reconnect. (default is 5 minutes)

theData This optional parameter specified the data to be loaded. If theData
is not specified, data is loaded from the variable specified by
$dataname.

fontSizes (v4.1) The list of font sizes returned by the server OWrite method
$getfontlist. If provided JS-OWrite will use the provided font sizes
to measure font heights so they are compatible with the fonts on the
Omnis server.

asyncId (v4.3) passed through to evAsyncDone on completion

asyncData (v4.3) passed through to evAsyncDone on completion

Page 51 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$loadstrings()

Loads translated strings from the remote form’s string table. Currently only string 7100 for
the Page Break text is supported.

$performautosave()

This method can be called by the developer to perform a local auto-save prior to entering a
risky operation such as contacting the server which can sometimes result in the loss of the
server connection, or rather the client realising that the server connection is lost and
locking out the client from further interaction with the form.

$reformat()

Reformats the entire document by performing an internal save and reload. This can be
useful when some formatting has gone wrong during complex paste or editing actions.

$savedata()

Call this method to save data to the instance variable that is assigned to the JS-OWrite
control’s $dataname property. Saving data is a asynchronous process which means
$savedata will return before the data has been saved. JS-OWrite will generate a
evSaveData event once the save-data operation is completed. At this point a server method
should be called to submit the data to a database. When calling server methods, Omnis will
call a method on the client when the server method completes execution. This method must
have the identical name appended with “_return”. When the “_return” method is called, the
auto-save data should be deleted.

$search(searchCriteria,asyncId,asyncData)

Searches for the specified text, class or bookmark, and selects the item.

Note: This is an asynchronous operation, so the operation will not have been completed by
the time the function returns control to the Omnis code. When the operation has been
completed, the evAsyncDone event is generated.

searchCriteria specifies the search type (“text”, “class” or “bookmark”) and the
value to be searched for, separated by a colon. For example, the
search criteria “class:Heading 1” will select the next paragraph
where the paragraph style is set to “Heading 1”.

asyncId passed through to evAsyncDone on completion

asyncData passed through to evAsyncDone on completion

$setselection(selStart,selEnd,asyncId,asyncData)

Sets the specified selection. This function allows one to synchronize selection ranges
between server OWrite objects and the JS-OWrite object on the client. The selection range
consists of two dot notation strings that identify the document object/paragraph selection
by use of an object type code and order number within the document. Nested objects are
identified by a sequence of type codes and order numbers separated by dots. A valid
selection range can be retrieved by calling $getselection(...,kWriSRJSDefault) for the
OWrite object on the server.

Page 52 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Note: This is an asynchronous operation, so the operation will not have been completed by
the time the function returns control to the Omnis code. When the operation has been
completed, the evAsyncDone event is generated.

selStart the starting selection address

selEnd the end selection address

asyncId passed through to evAsyncDone on completion

asyncData passed through to evAsyncDone on completion

$tableaction(action,execute,asyncId,asyncData)

Tests or executes the specified table action.

Note: Executing the action is an asynchronous operation, so the operation will not have
been completed by the time the function returns control to the Omnis code. When the
operation has been completed, the evAsyncDone event is generated.

action the table action to perform. One of the kWriTblAct... constants.

execute specify kTrue to execute immediately, or kFalse to simply test if
the specified operation is allowed in the current context.

asyncId passed through to evAsyncDone on completion

asyncData passed through to evAsyncDone on completion

$updatecontrols(property,needsRebuild)

This method can be called to redraw the control that displays the specified property. If the
control requires a complete rebuild, pass kTrue for the second parameter.

Page 53 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Examples Reference
This reference serves as a guide to the classes that are provided by the OWrite example. It gives
a brief description of each class. More information can be found in the classes’ $desc property
and the many comments in the classes’ code.

Contents
Main Examples - describes the document manager and label writer example windows.

Formatting Interface - describes window classes related to the formatting of OWrite
document content.

Insert Windows - describes windows related to inserting of document content.

Other Windows - describes windows related to miscellaneous OWrite features such as find
and replace, font mapping, document info, exporting, sending mail, etc.

The Menus - describes the menu classes that are used by the various window classes.

The Objects - describes the object classes that are used by the various window classes.

Other classes - describes various classes used by the window classes, such as schemas and
tables, tool bars and reports.

JS-Client Classes - describes all the classes that implement the JavaScript examples.

Page 54 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Main Examples
This group describes the main OWrite example windows that are available from the examples
menu.

 wOWrite
Implements the OWrite document manager example. This interface is also used to manage the
Brainy Data component documentation. It is the most complex of the examples and it may be
beneficial to investigate some simpler examples first. Brainy Data has produced a library called
OWriteSimple.lbs that includes a much simplified implementation of an OWrite control with the
full use of the spell checker.

The document manager interface utilises many of the classes in the example library for
formatting, evaluating, printing, mailing etc. Some of these classes will be described later.

 wOWriteLables
A fully functioning label printing interface using OWrite tables. This example has been designed
so it can be easily adapted into your library with a minimum of work. The window utilises a
table and schema class for storing label templates. The table class’ $dowork method has been
stubbed to allow you to implement your own DB storage of label templates without having to
search through pages of code in the window. The OWrite example folder includes a small set of
Avery label templates that can be imported via the interface by dropping them onto the OWrite
control, or by clicking the import button. These templates are MS Word files that were
downloaded from the Avery web site. All that we did is convert them to RTF using MS Word, so
OWrite can read them.

To print labels using this interface you simply provide a list of data and a pick list. The table
class implements two methods that build sample data and pick lists.

Page 55 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Formatting Interface
The following classes are used to format styles, paragraphs and text of an OWrite document.
Most of these are used by both wOWrite window. Nearly all of the windows that start with
wFormat... in their name have a super class called wFormatSuper. This class provides common
functionality for the formatting windows, so that the individual formatting windows can
concentrate on simply loading and saving properties to and from the windows fields.

 wFormatBorderBackground
Used for changing table border and background options.

 wFormatBullets
Used for setting paragraph bullet and numbering options. This window can be opened from the
format menu to format the selected paragraphs. It is also used by wFormatStyle as a sub window
for formatting bullet and numbering options of a style.

 wFormatDocLink
This window is not derived from wFormatSuper. It is used when inserting a link to another part
of the same document or to another document. Links in OWrite documents are just calculated
fields that execute Omnis notation when the field is clicked. The notation can be anything as
long as your window implements it. The document manager example inserts
$cinst.$openDocument(...parameters...). You will find a method in the wOWrite named
$openDocument that is called when the field is clicked.

 wFormatField
Used for formatting an OWrite calculated field. Such a field can be given an Omnis calculation
or notation that returns a result. When a document is evaluated, the field is exchanged with the
result of your calculation. It is valid for a calculation to return RTF or text.

 wFormatFont
Used for formatting font properties of the current selection. This window can be opened from the
format menu to format the selected text. It is also use by wFormatStyle as a sub window for
formatting font properties of a style.

 wFormatPaper
This window provides an interface for changing the document paper size and margins. This
window can be opened from the format menu.

 wFormatParagraph
Used for formatting paragraph properties such as line spacing and tabs. This window can be
opened from the format menu to format the selected paragraph(s). It is also used by
wFormatStyle as a sub window for formatting paragraph properties of a style.

Page 56 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

 wFormatPicture
This window provides an interface for formatting a picture object. The same window is used to
format static pictures and calculated picture fields. It has data tab that is hidden or shown
appropriately. This window can be opened from the format menu to format the selected picture
object.

 wFormatStyle
This window is not derived from wFormatSuper. This window provides an interface for adding,
removing and formatting all the styles in the current document. It has a function to remove all
unused styles. It uses wFormatBullets, wFormatFont and wFormatParagraph as sub windows to
format the styles’ properties. This is done with the aid of OWrite by setting the $editstylename
property of the current document. When this property is set all formatting notation is directed
against that style instead of the current selection. This window can be opened from the format
menu.

 wFormatSuper
This is the super class for all the standard formatting windows. It provides methods for
construction, loading and saving of properties, and methods for testing changes. All that is
required of sub classes is to implement $initialize, $load and $save methods for handling the
properties appropriate for this window.

 wFormatTable
This window provides a sophisticated interface for formatting tables, selected table rows or
columns and selected cells. It has a pick list that allows the user to apply changes in different
modes, i.e. current selection, entire table, etc. From this window, the user can also open the
wFormatBorderBackground window. This window can be opened from the format menu to
format the selected table object.

 wFormatTextbox
This window is used to format a text box. Text boxes have properties such as their size, borders
and background, floating properties and calculations. A text box can be calculated just like a
calculated field. This window can be opened from the format menu to format the current text box
object.

 wOWriteTools
This window does not derive from wFormatSuper. It implements the main examples formatting
palette. This is not an easy window to implement or maintain because of its floating nature of the
field groups. But the final appearance and use is well worth the effort.

 wOWriteToolsFields
This window does not derive from wFormatSuper. It is used as sub windows by wOWriteTools,
and provides an interface for inserting database and other fields into an OWrite document.

Page 57 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

 wOWriteToolsHF
Version: 3.0

This is a po-pup utility window that is opened when editing a page header or footer. It
implements buttons for inserting page numbers, page count, date and time objects, as well as
navigation buttons to advancing through the various headers and footers of the document.

Page 58 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Insert Windows
There are a number of windows that aid with the inserting of more complex document objects
such as tables, and custom fields.

 wOWriteInsertCustomField
It is possible for users to create their own custom fields by selecting some content in a document
and choosing “Insert Custom Field” from the insert menu. This content may include calculated
fields. This makes it possible to combine several calculated fields into a new custom field and
that may include some additional formatted text. The current OWrite interface adds this new
field to the Custom group of the Other Fields tab in the formatting palette. The examples do not
save these back to a database, so they are lost when you quit Omnis. We leave this up to you, the
developer. This window allows the user to name the custom field and give it a description.

 wOWriteInsertDocument
This window aids with the inserting of a document link. It lists all the documents in the current
group and provides additional fields for specifying the text for a heading or a search. The
window builds the notation $cinst.$openDocument(...parameters...) which it assigns to the
calculated field.

 wOWriteInsertTable
This window implements an interface to insert a new table object. It provides fields for
specifying the row and column count, as well as a list for choosing data from the sample
database for calculated tables. OWrite tables can be associated with an Omnis list, and the table’s
cells can be linked to columns in the list. When a document is evaluated, the table will display
the list’s content.

Page 59 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Other Windows
There are a number of additional windows that provide features such as find and replace,
document info., a document-object editor and more

 wFindReplace
This is a fairly sophisticated find and replace interface for searching the current document. As
well as searching documents for simple text, styles can be selected to be included in or excluded
from a search. For replace actions, styles can also be specified allowing the user to find and
replace styles such as bold and italic with just bold, etc. The window uses two object variables
that are derived from the OWrite search object to specify the style information. One for the find
and one for the replace. This window also uses the windows wformatFont, wFormatParagraph,
wFormatBullets and wFindStyle, for specifying the find and replace options. This window can
be opened from the find button in the window toolbar.

 wFindStyle
This window is only used by wFindReplace to specify a style name in a find and replace action.
It allows the user to search for styles and replace them with another style.

 wFontMapping
OWrite allows you to map font names to improve the cross-platform appearance of fonts within
a document. This may not be required for many of today’s true-type font, but some fonts may
still require some user intervention, especially if OWrite is used on Linux. OWrite has a static
method called $loadfontmap() that can be picked from the Methods tab of the Omnis Catalogue.
The examples include a basic font mapping table in a disk file. This window is used to edit this
table.

 wOWriteDocInfo
This window displays document information such as word count, words per sentence, etc. This
window can be opened from the context menu.

 wOWriteExport
This is a fairly sophisticated interface for exporting one or more documents as OWrite format,
RTF, HTML and plain text. The user can choose to export just the current document, or select
several documents from the current group. When exporting to HTML, document links are
converted to HTML links and, as long as all the documents that are referred to are exported, the
links will work very well.

 wOWriteLabelDetails
This is a small utility window that is used by the wOWriteLabels window for editing the details
of a label. This window can be opened from the context menu in the label example window.

 wOWriteMail

Page 60 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

This is a simple example that demonstrates how an OWrite document can be converted to HTML
and TEXT mail content, including images, and sent using the Omnis SMTPSend command. The
window provides an interface for the user to enter the mail server address, recipient and sender
address and subject. This window can be opened from the Send Mail button in the document
manager window’s toolbar.

 wOWritePrint
This window provides an interface for printing the current document, or two or more documents
from the same group to various destinations. For the purpose of a complete example, you can
choose to print using an Omnis report, or the OWrite $print method. This window only
implements Screen, Printer and PDF as the choices for the destination, but theoretically, all
Omnis destinations can be printed to. This window can be opened from the Print button in the
toolbar of the example windows.

 wOWriteSnapShot
This window demonstrates how one can create a bitmap based picture from an OWrite document
page. It is useful if one wants to automate the creation of thumb images for document templates.
When users create new documents in your application they could be presented with a list of these
thumb images. This window can be opened from the OWrite context menu.

 wOWriteTestSelection
This window was created for our benefit, to thoroughly test the $setselection and $getselection
methods. It is a useful example that demonstrates the more sophisticated capabilities of these two
methods. This window can be opened from the OWrite context menu.

 wOWriteViewDocObjects
This window demonstrates the potential use of the $getobjslist method. It provides an interface
for viewing and manipulating all the objects in the current document.

Page 61 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

The Menus
There are a small number of menus that are installed in the main menu bar or are used as context
or pop-up menus in some of the windows.

 mFormat
This menu is used by wOWrite and wHeaderFooter for the format button in the windows toolbar.

 mFormatContext
This menu is used by wHeaderFooter as the main OWrite context menu.

 mFormatFind
This menu is used by the wFindReplace window. It opens the various formatting windows for
specifying the formatting options for the find and replace.

 mInsert
This menu is used by wOWrite as the insert menu for the insert button in the toolbar.

 mInsertHF
This is the main insert menu for the wHeaderFooter example window.

 mOWrite
This menu is installed as a sub menu on the examples menu in the main menu bar.

Page 62 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

The Objects
Three object classes are used throughout the examples, for tasks such as printing, searching and
spell checking.

 oOWrite
This object can be used for manipulating, printing and merging of OWrite documents. It derives
from the external OWriteDoc object. It is actually not used by any of the examples, but could be
used as your main NV object to which you can add additional methods for managing documents
without the need of a window.

 oOWriteSearch
This object is used by wFindReplace. It derives from the external OWriteSearch object. Its main
purpose is to specify search and replace criteria. For a find and replace action, two of these
objects are required.

 oOWriteSession
This object is used by the wOWrite and wHeaderFooter example windows. It derives from the
OSpell2 external object SpllSession. Its main purpose is to provide a spell check session for an
OWrite window control. Each window control requires its own session during loading and
editing of documents. In addition, the OSpell2 library requires the OWrite window control to
provide a notation method called $spellsession that returns an item reference to this object.

Page 63 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Other classes
There are a small number of additional support classes that are used throughout the examples.

 rOWrite
This prints a single OWrite document with headers and footers provided by the reports header
and footer sections. It is used by wOWritePrint and rfOWrite for the web-client document
preview.

 rOWriteMailMerge
This documentation includes a mail merge example document. The document has an active link
that will run a mail merge which uses this report.

 sOWriteLabels
This schema class is used by the label examples. It defines the label template list. You can adapt
this class to store label templates in your own database. The wOWriteLabels window is the only
class that requires it.

 tOWriteLabels
This table class implements functionality for managing label template records. For the purpose of
the label examples, the $dowork method has been stubbed so it can be easily adapted for storing
label templates in your own database. The wOWriteLabels window is the only class that requires
it.

 tbOWrite
This is the main toolbar class for the wOWrite window.

 tbOWriteLabels
This is the main toolbar class for the wOWriteLabels window.

Page 64 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

JS-Client Classes
This section lists the OWrite JavaScript client example classes. They consist of the main
document form and forms for formatting the document and additional classes for evaluating and
printing documents on the server.

Note: All rfOWFormat.... classes subclass rfOWFormatSuper.

 rfOWriteSuper
The main web-client super class. This window implements most of the common client and server
functionality for the document manager sub-class.

 rfOWriteJSDemoFullSize
The main web-client form in full size. This window implements a js-client version of the
document manager. It can be used to view, edit and print documents.

 rfOWFormatSuper
This is the super class for all the remote formatting forms. It provides some common
functionality for loading and saving properties.

 rfOWFormatDocument
Remote form for formatting document properties such as page size, orientation, margins, etc.

 rfOWFormatField
This form is used to edit/format calculated fields.

 rfOWFormatInfo
This form is used to edit/format info fields (page count, page number, date, time, etc).

 rfOWFormatNone
This form is displayed when no object is selected.

 rfOWFormatParagraph
Remote form for formatting paragraph attributes.

 rfOWFormatPicture
Remote form for editing the attributes of the selected picture object.

 rfOWFormatTable
This form displays the table, table row and table cell properties

Page 65 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

 rfOWFormatText
This form is used to set the font options for the selected text in the document.

 rfOWFormatTextbox
Remote form for formatting the current text box object.

 rfOWOptions
Remote form for general example behaviour.

 objOWriteEval
Object used for evaluating documents on the server. It directly inherits from the OWrite non-
visual external object OWriteDoc, providing it with all the functionality for loading, evaluating
and saving documents.

 rmOWriteContext
Main remote context menu.

 rmInsertObject
Remote context sub-menu for inserting items, such as pictures, fields and page breaks.

 rmTableOptions
Remote context sub-menu for table object actions such as inserting and deleting rows or cells.

 rtOWriteJS
Main OWrite document manager remote task.

 rtGetPDF
Remote task used for ultra-thin requests to download the PDF file that was produced for the
current document.

Page 66 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

External Component Reference
Introduction
This chapter lists all the OWrite constants, properties, methods and events that are available
within desktop and/or server implementations. The xcomp OWrite component library supplies
the following external objects

 Window Object for editing and viewing OWrite documents in an Omnis desktop window.

 Report object for printing OWrite documents in an Omnis report.

 Non-visual object “OWriteDoc” for manipulating, searching and printing OWrite documents
without the need for a window.

 Non-visual object “OWriteSearch” for searching OWrite documents for text and/or styles.

Each object provides its own set of properties, methods, constants and events.

Contents
Constants - OWrite provides a large number of constants that are used with OWrite
properties or methods. The constants are organised into functional groups and can be
accessed from the Omnis Catalogue.

Static Methods - Static methods are not associated with any OWrite object and can be used
anywhere in an Omnis method. You can select static methods from Functions tab in the
Omnis Catalogue.

Note: Static methods are not supported in methods that are executed in the web client.
However some static methods are also implemented as methods of the OWrite
form/window/non-visual object thus making them available for use on web clients. Some
methods such as the $getfontlist() may differ in behaviour when used with OWrite object
instances.

Window/NV Object Properties - The window/non-visual object properties control the
behaviour and appearance of the objects and document content. All listed properties are
common between window, remote form and non-visual OWrite objects.

Note: Properties shown in red are read-only and cannot be assigned.

Window/NV Object Methods - In general the object methods listed in this table apply to
OWrite window objects, OWrite remote form objects and OWrite non-visual objects. Some
methods may not exist on web-client (see individual method descriptions).

Window Object Events - The events listed in this table are generated for both the OWrite
window and remote form objects. Events are usually generated as a result of user actions.

Report Object Properties - The OWrite report object can be used in Omnis reports for
printing OWrite documents. The properties listed in this table are used to specify the
OWrite data and printing options.

Page 67 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

The example library implements a report that prints OWrite documents with page headers,
footers and page numbers.

OWriteSearch - NV Object Properties - The OWriteSearch object's main function is to
record format settings and text for find and replace. The object implements a small subset
of properties taken from the OWrite document objects that relate to formatting as well as
properties related to search options.

OWriteSearch - NV Object methods - The OWriteSearch object implements methods
related to multi-selection searches.

Page 68 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Constants
kWriBord...
Constants for use with the $curobjborderstyle property.

Name Value Description

kWriBordNone 0 Text box has no border.

kWriBordLine 1 Single line border.

kWriBordLine2 2 Double line border of equal width.

kWriBordLine2TT 3 Double line border with thick and thin lines.

kWriBordLine2TTR 4 Reversed double line border with thin and thick
lines.

kWriBordLine3 5 Three line border with thin, thick, and thin lines.

kWriChar...
Special character constants for use with $::insert().

Name Value Description

kWriCharPageBreak 3 Page break character.

kWriCharTab 9 Tab character.

kWriCharLine
(v2.0)

10 Line break.

kWriCharReturn 13 Paragraph break.

kWriErr...
Constants returned by OWrite method calls.

Name Value Description

kWriErrBadData -2 Returned by $loaddata() and $mergedocs() when the
specified data is of an unrecognised format.

Returned by $loadstrings() when the specified table
has not been loaded.

kWriErrBadMethod -12 Indicates an internal error. Contact Brainy Data.

kWriErrBadParams -1 Returned by all methods when the incorrect number
or type of parameters have been passed to a method.

kWriErrBadVersion -6 Returned by $loaddata() when the OWrite data is of
a newer version than the installed component can
load.

Page 69 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriErrInsert -4 Returned by $::insert() when the method failed. This
could be because the format and data type where not
compatible or another unknown error occurred.

kWriErrInvalidSelRange -11 Returned by $setselection() when the mode is
kWriSRAddress and the specified addresses where
not valid.

kWriErrNone 0 No error.

kWriErrPrint -3 Returned by $print() when a print manager error
occurred.

kWriErrSpell -5 Returned by $spell() when an invalid action was
specified. For valid actions see kWriSpll...

kWriErrStyleExists -7 Returned by $addstyle() when attempting to add a
style name that already exists.

kWriErrStyleInUse -10 Returned by $removestyle() when attempting to
remove a style that is in use.

kWriErrStyleNotFound -8 Returned by $addstyle() if the specified based on
style does not exist, and by $removestyle() if the
style is not found.

kWriErrStyleTooMany -9 Returned by $addstyle() when the maximum number
of styles (256) has been reached.

kWriErrWarning
(v2.4.1)

-13 Returned by some methods when a non-fatal
warning error has occurred. The property
$docwarnings will return a list of warnings.

kWriErrNoTextMap
(v3.0)

-14 Attempt to use kWriSRPlainText with no text map.

See also Plain Text Analyzes.

kWriErrEndOfTextMap
(v3.0)

-15 OWrite has reached the end of the text map.
Document content may be out of sync.

See also Plain Text Analyzes.

kWriErrNotMultiSelect
(v3.0)

-16 Search object has not been initialised with
$multiselection enabled.

See also Multi-Selection Find.

kWriFmt...
Constants for use with the $savedata() and $loaddata() methods for specifying the format of the
data.

Name Value Description

Page 70 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriFmtDefault 0 OWrite binary format. Must use binary field for
storage.

kWriFmtText 1 Plain text format. When exporting to a text file on
disk you must use a binary field for intermediate
storage.

From version 5.0 onwards, the additional option
kWriOutputHF can be used to output a single header
and footer at the beginning and end of the text
document, i.e.

...kWriFmtText,kTrue,kWriOutputHF,kTrue)

kWriFmtRTF 2 Rich text format. When exporting to a RTF file on
disk you must use a binary field for intermediate
storage.

kWriFmtHTML
(v1.50)

3 HTML format. This option can only be used with
$savedata() (Fat-client only). When exporting to a
HTML file on disk you must use a binary field for
intermediate storage.

From version 5.0 onwards, the additional option
kWriOutputHF can be used to output a single header
and footer at the beginning and end of the text
document, i.e.

...kWriFmtHTML,kTrue,kWriOutputHF,kTrue)

kWriFmtUnassigned
(v2.2.2)

255 Used with $datanametype to disable the use of
$dataname.

kWriFrame...
Constants for use with $curobjframeoptions. These constants can be used to turn off edges of
an objects border, and specify special border edging for table cells.These constants do not
override the border style and other border settings, they merely specify on which edges the
border is drawn.

Name Value Description

kWriFrameNone 0 Draw no border.

kWriFrameLeft 1 Draw the left border.

kWriFrameTop 2 Draw the top border.

kWriFrameRight 4 Draw the right border.

kWriFrameBottom 8 Draw the bottom border.

Page 71 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

The constants that follow specify special framing modes for table fields. If these values are
specified, they will override the above constants and the table will calculate the border edges
that are to be drawn.

kWriFrameCustom 0 Draw custom edge arrangement as specified by
left/top/right/bottom above. No special framing
mode.

kWriFrameBox 16 Draw box around selected cells, no lines in between.

kWriFrameCols 32 Draw column lines for all selected cells, and top
lines for the top most selected cells and bottom lines
for the bottom most selected cells.

kWriFrameRows 48 Draw row lines for all selected cells and left lines
for the left most selected cells and right lines for
right most selected cells.

kWriFrameGrid 64 Draw borders on all four sides (same as
left+top+right+bottom)

kWriGrammar...
Version: 5.4
Scope: Control
Set of constants for assigning the property $grammaroptions that specifies which grammar
options are to be applied when editing documents.

Name Value Description

kWriGrammarNone 0 Grammar options are disabled

kWriGrammarCapFstWrd 1 Capitalize the first word of a sentance

kWriGrammarDelDblSpace 2 Remove double spaces when deleting selected text

kWriHtml...
Version: 1.50
Custom export parameter constants for use with $savedata() when saving to HTML.

Name Value Description

kWriHtmlNoMargins 1 If specified as kTrue, the page margins are ignored.

kWriHtmlSizeAdjust 2 If specified as kTrue, font sizes are scaled down by a
factor of 72 over 96. This is to counteract the effect
of browsers displaying fonts at a rate of 96 DPI.
This parameter is only meaningful when used on the
Macintosh platform to create on screen likeness. It
will however distort likeness when the html file is
printed.

Page 72 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriHtmlOmnisCompatible 3 FOR FUTURE USE. NOT FULLY
IMPLEMENTED.

kWriHtmlBookmarks 4 This parameter allows you to specify a comma
separated list of style names for generating HTML
bookmarks within your document. It gives you the
capability to link together HTML documents
produced by OWrite.

kWriHtmlRawSupport
(v2.1.2)

7 When executing $savedata() with kWriFmtHtml,
and the custom parameter kWriHtmlRawSupport is
specified with kTrue, OWrite will export the content
as RAW html if the content starts with the text
"<HTML".

kWriHtmlNoAutoSize
(v2.6.0)

12 When specified with kTrue, the HTML produced
will use the DIV tag to prevent document content
from resizing horizontally to fit the width of the
browser window.

kWriHtmlBgColor
(v2.6.0)

13 This constant can be used to specify the background
colour for the HTML document.

kWriHtmlTitle
(v3.0.0)

14 Used to specify the text for the html <title> tag.

kWriInsert...
(v4.5)
Constants for use with the method $docinsert(). These constants are flags and can be specified
in combination.

Name Value Description

kWriInsertOver 0 insert will replace current selection.
(currently only applies to jsoWrite)

kWriInsertAfter 1 content will be inserted after current selection.
(currently only applies to jsoWrite)

kWriInsertKeepStyles 2 if specified this will keep the styles of the current
selection and apply it to the inserted text

kWriInsertSelect 4 inserted text will be selected following the insert.
This replaces the original kTrue value for this
parameter, although existing code which passes
kFalse or kTrue will behave as before.

kWriInsertApplyMaxImageSize
(v5.1)

8 apply the $maximagesize property when inserting
pictures.

Page 73 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriLine...
Constants for use with the $curobjlinestyle property.

Name Value Description

kWriLineSolid 0 Solid line.

kWriLineSolid 1 Dotted line.

kWriLineDash 2 Line with dashes.

kWriLineDashDot 3 Line with repeating dashes and dots.

kWriLineDashDotDot 4 Line with repeating dashes and two dots.

kWriLineLongDash 5 Line with repeating long dashes.

kWriLineLongDashDot 6 Line with repeating long dashes and dots.

kWriLineLongDashDotDot 7 Line with repeating long dashes and two dots.

kWriList...
Constants for use with the $curlisttype property.

Name Value Description

kWriListNone 0 Paragraph has no bullets and is not numbered.

kWriListBullet 1 Paragraph has bullets.

kWriListDecimalD 2 Paragraph is numbered using decimal numbers and
terminated with a dot.

kWriListDecimalP 3 Paragraph is numbered using decimal numbers and
terminated with a parenthesis.

kWriListAlphaUD 4 Paragraph is numbered using upper case alpha
characters and terminated with a dot.

kWriListAlphaUP 5 Paragraph is numbered using upper case alpha
characters and terminated with a parenthesis.

kWriListAlphaLD 6 Paragraph is numbered using lower case alpha
characters and terminated with a dot.

kWriListAlphaLP 7 Paragraph is numbered using lower case alpha
characters and terminated with a parenthesis.

kWriListRomanUD 8 Paragraph is numbered using upper case Roman
numerals and terminated with a dot.

kWriListRomanLD 9 Paragraph is numbered using lower case Roman
numerals and terminated with a dot.

Page 74 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriLoad...
Custom parameter constants for use with $loaddata() when importing or loading data.

Name Value Description

kWriLoadRawPicts
(v3.5)

16 If specified as a custom parameter with $loaddata()
during import (currently only RTF), PNG and JPEG
images are not converted to Omnis pictures and are
stored as raw PNG or JPEG images with the
document.

Example:
...$loaddata(rtf,kWriFmtRtf,kFalse,
kWriLoadRawPicts,kTrue)

kWriLoadMetaQuality
(v4.5)

18 This parameter can be used to specify a
multiplication factor (valid values are between 1 and
8) to increase the pixel width and height that is used
to convert a windows meta file to a pixel based
image. This should improve the final quality of the
bitmapped image to some extend.

WARNING: using this feature will increase the
overall image size by the specified factor squared.
For example a meta-file with an intended resolution
of 100 by 50 pixels will be scaled to 400 by 200
pixels if a factor of 4 is specified. This results in an
image size of 80,000 pixels (400x200), which is 16
times larger than the 5,000 pixels (100x50) if no
factor had been specified.

kWriMenuItem...
(v2.0)
Constants for use with the flags column of menu lists. See $popupmenu().

Name Value Description

kWriMenuItemNone 0 Menu item is disabled

kWriMenuItemEnabled 1 Menu item is enabled

kWriMenuItemChecked 2 Menu item is checked

kWriMenuItemEdit...
(v3.0)
Constants for use with the ID column of menu lists. See $popupmenu().

Name Value Description

kWriMenuItemEditUndo 1 Menu item ID for the edit menu ‘Undo’ action

Page 75 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriMenuItemEditRedo 2 Menu item ID for the edit menu ‘Redo’ action

kWriMenuItemEditCut 3 Menu item ID for the edit menu ‘Cut’ action

kWriMenuItemEditCopy 4 Menu item ID for the edit menu ‘Copy’ action

kWriMenuItemEditPaste 5 Menu item ID for the edit menu ‘Paste’ action

kWriMenuItemEditClear 6 Menu item ID for the edit menu ‘Clear’ action

kWriMenuItemEditSelectAll 7 Menu item ID for the edit menu ‘Select All’ action

kWriMerge...
(v3.5.0)
Constants for use with $mergedocs.

Name Value Description

kWriMergePageBreak 1 seperate the two documents with a page break

kWriMergeNoPaginate 2 prevent pagination after merge to save time.
IMPORTANT: only valid action after one or more
calls to $mergedocs is a call to $savedata

kWriMergeUseExistingStyles 4 ignores differences in identical named styles and
always uses styles from first document

kWriObjAlign...
Constants for use with the $curobjalign property for specifying the alignment of an in-line
object with the surrounding text.

Name Value Description

kWriObjAlignBottom 0 The bottom of the object is aligned with the bottom
of the text.

kWriObjAlignBase 1 The bottom of the object is aligned with the baseline
of the text.

kWriObjAlignTop 2 The top of the object is aligned with the top of the
text.

kWriObjAlignCenter 4 The object is centered with the text.

kWriObjFmt...
Constants for use with the $curobjfmt property for specifying the formatting mode of an object.

Name Value Description

kWriObjFmtInline 0 Object is in-line with text.

kWriObjFmtBehind 1 Object is positioned behind the text

kWriObjFmtInfront 2 Object is positioned in front of the text

Page 76 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriObjFmtWrap 3 Text is wrapped around the object

kWriObjFmtSplit 4 Surrounding text is split horizontally.

kWriObjType...
Constants for use with the $::insert() for specifying the object type. Also returned by the
$curobjtype property.

Name Value Description

kWriObjTypeNone 0 No valid object (no object selected).

kWriObjTypeDoc 1 Document object (currently not used).

kWriObjTypePara 2 Paragraph object (currently not used).

kWriObjTypePict 3 Picture object.

kWriObjTypeCalc 4 Calculated field

kWriObjTypeText 5 NOT IMPLEMENTED

kWriObjTypeCalcPict 6 Calculated picture

kWriObjTypeTextbox 7 Text box

kWriObjTypeChar 8 Character object for inserting special characters. See
kWriChar...

kWriObjTypeTable
(v2.0)

9 Table object. Constant can be used for inserting a
table object.

kWriObjTypeTableRow
(v2.0)

10 Table row object (currently not used).

kWriObjTypeTableCell
(v2.0)

11 Table cell object.

kWriObjTypeHeadFoot
(v3.0)

12 The object type of a header or footer object.

kWriObjTypeInfo
(v3.0)

13 Document info object such as page number or count.
You can insert info objects of the following sub
types.

See also Header and Footer Object types.

kWriObjTypeInfo...
(v3.0)
Subtype constants for use with the kWriObjTypeInfo object. These constants are used with the
$docinsert() method, i.e. $docinsert(kWriObjTypeInfo,kWriObjTypeInfoDate)

See also Header and Footer Object types.

Name Value Description

Page 77 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriObjTypeInfoPgCnt 1 Displays the total page count.

kWriObjTypeInfoPgNum 2 Displays the page number.

kWriObjTypeInfoDate 3 Displays the current short date (formatting specified
by #FD)

kWriObjTypeInfoTime 4 Displays the current short time (formatting specified
by #FT)

kWriObjTypeInfoPgCntFP
(v4.5)

5 Displays the total page count excluding first page

kWriObjTypeInfoPgNumFP
(v4.5)

6 Displays the page number excluding the first page

kWriObjTypeInfoPgCntLR
(v4.5)

7 Displays the total page count using lower-case
roman numerals

kWriObjTypeInfoPgCntUR
(v4.5)

8 Displays the total page count using upper-case
roman numerals

kWriObjTypeInfoPgNumLR
(v4.5)

9 Displays the page number using lower-case roman
numerals

kWriObjTypeInfoPgNumUR
(v4.5)

10 Displays the page number using upper-case roman
numerals

kWriOutput...
Additional output options when exporting documents to different formats

See also kWriFmt...

Name Value Description

kWriOutputHF
(v5.0)

19 Used when exporting documents to single page
output formats (currently plain text and html). When
this parameter is specified as kTrue, oWrite will
export a single default header and a single default
footer.

DISPLAY BEHAVIOUR:

When exporting to HTML, OWrite will attempt to make some intelligent positioning
choices based on the tabs that are used in the header or footer.

TAB BEHAVIOUR:

Traditionally, the OWrite HTML export translates tabs to three or four simple spaces.
This is because HTML does not support tab positions within in-line text flow. However,
within headers and footers, OWrite creates separate text spans that take advantage of the
HTML flex-box behaviour to simulate left-center-right tab behaviour that are typically
used within headers and footers. This will produce a reasonable approximation of the
aforementioned tabs. Tab combinations OWrite will look out for are:-

Page 78 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

• headers and footers with a center and right tab
this will result in three flex boxes being used (left,center,right aligned)

• headers and footers with just a right tab
this will result in two flex boxes being used (left and right aligned)

LIMITATIONS:

Because only a single header and footer is exported, OWrite info fields which display the
current page number or document page count will be nonsensical and should not be used.
A typical use for a fixed footer in a html document may be some advisory note or other
relevant information such as copyright info, etc.

kWriOverflow...
(v3.6.5)
Constants send as part of the evOverflow event. The constants indicate what action caused the
overflow

See also $checkoverflow and evOverflow.

Name Value Description

kWriOverflowChar 1 Overflow was caused by user typing.

kWriOverflowPaste 2 Overflow was caused by the user pasting content.

kWriOverflowInsert 3 Overflow was caused by a programmed call to
$::insert.

kWriOverflowLoad 4 Overflow was caused by a call to $loaddata.

kWriOverflowReplace 5 Overflow was caused by a spell-checker replace
action.

kWriPaste...
(v5.1.0)
The paste options to be used with $pasteoptions. These constant values are binary based and
thus can be added together to specify a set of options.

The constants a set constants and therefore must never be used by adding constant values to the
existing value of the property, i.e. DO NOT DO

Calculate owrite.$pasteoptions as
owrite.$pasteoptions+kWriPasteStripEmptyLineNBSP

If kWriPasteStripEmptyLineNBSP has already been applied to the property it will accumulate.
Instead you CAN DO

Calculate owrite.$pasteoptions as
bitor(owrite.$pasteoptions,kWriPasteStripEmptyLineNBSP)

Name Value Description

kWriPastePlainNone 0 Use this constant on its own to disable pasting into
oWrite.

Page 79 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriPastePlainText 1 Allow pasting of plain text

kWriPasteRichText 2 Allow RTF and images as part of RTF if
kWriPasteImages is also specified

kWriPasteImages 4 Allow pasting of images direct from clipboard or as
part of RTF if kWriPasteRichText is also specified

kWriPasteStripEmptyLineNBSP 8 Strip spaces and non-breaking spaces from
otherwise empty lines during a paste

kWriPasteRTFnoParaStyles 16 When pasting RTF, document and paragraph styles
are ignored.

kWriProgress...
(v3.5.0)
Specifies the type of action being performed during progress event messages. See evProgress.

Name Value Description

kWriProgressLoad 1 progress during loading of documents

kWriProgressSave 2 progress during saving of documents

kWriProgressImport 3 progress during exporting of document

kWriSave...
Custom export parameter constants for use with $savedata().

Name Value Description

kWriSaveNonUnicode
(v2.2)

8 Can be used when saving to HTML or Plain text.
When used with HTML, the HTML is encoded
using the ISO-8859-1 character set. With plain text,
the operating system character set is used.

kWriSaveSelection
(v1.62)

5 If set to kTrue, only the current selection is saved.

kWriScrDPI...
Constants for use with the $screendpi property. Other values can be specified. The valid range
is 36 to 192.

Name Value Description

kWriScrDPIDefault 0 Use default DPI for platform (72 on Macintosh and
96 on Windows and Linux).

kWriScrDPI72 72 Render documents at 72 DPI on screen regardless of
platform.

Page 80 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriScrDPI96 96 Render documents at 96 DPI on screen regardless of
platform.

kWriSelect...
(v2.0)
Constants for use with the $setselection(), $getselection and $convselection().

Name Value Description

kWriSelectCurrent -1 Constant that specifies the current selection when
used for the iSelStart, iSelEnd or iSelObjID
parameters of $setselection() and $convselection().

kWriSelectStart -2 Constant that specifies the beginning of the
document, text box or table cell when used with the
iSelStart or iSelEnd parameters of $setselection()
and $convselection().

kWriSelectEnd -3 Constant that specifies the end of the document, text
box or table cell when used with the iSelStart or
iSelEnd parameters of $setselection() and
$convselection().

kWriSelectHeadEvenDef
(v3.0)

-20 The object ID for the default page header or page
header for even pages if $headfootoddeven is true.

See also Headers & Footers.

kWriSelectFootEvenDef
(v3.0)

-19 The object ID for the default page footer or page
footer for even pages if $headfootoddeven is true.

See also Headers & Footers.

kWriSelectHeadOdd
(v3.0)

-18 The object ID for the page header for odd pages if
$headfootoddeven is true.

See also Headers & Footers.

kWriSelectFootOdd
(v3.0)

-17 The object ID for the page footer for odd pages if
$headfootoddeven is true.

See also Headers & Footers.

kWriSelectHeadFirst
(v3.0)

-16 The object ID for the page header for the first page
if $headfootfirstpage is true.

See also Headers & Footers.

kWriSelectFootFirst
(v3.0)

-15 The object ID for the page footer for the first page if
$headfootfirstpage is true.

See also Headers & Footers.

Page 81 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriSelectHeadFoodNext
(v3.0)

-4 The object ID for the next page header. Useful for
moving through all headers and footers sequentially.

See also Headers & Footers.

kWriSelectHeadFoodPrev
(v3.0)

-5 The object ID for the previous page header. Useful
for moving through all headers and footers
sequentially.

See also Headers & Footers.

kWriSpll...
Constants for use with the $spell() method. (Fat-client only)

Name Value Description

kWriSpllCancel 1 Cancel the interactive spell check.

kWriSpllCheckSelection 2 Check selected text or all text if no text is selected.

kWriSpllCheckAll 3 Check all text.

kWriSpllIgnoreWord 4 Ignore the selected word.

kWriSpllIgnoreAll 5 Ignore all occurrences of the selected word.

kWriSpllInvalSelection
(v2.2.2)

6 Forces OWrite to spell-check the current selection in
the background.

kWriSpllInvalAll
(v2.2.2)

7 Forces OWrite to spell-check the entire document in
the background.

kWriSR...
(v2.0)
Constants for use with the $getselection(), $setselection() and $convselection().

Name Value Description

kWriSRDefault 0 Standard selection range, characters including white
space and object place holders.

kWriSRChars 1 Selection range that only counts non-white space
characters.

kWriSRWords 2 Selection range that counts words.

kWriSRRows 3 Selection range that counts paragraph and table
rows.

kWriSRSentences 4 Selection range that counts sentences. Empty
paragraphs do not return a sentence count.

kWriSRParagraphs 5 Selection range that counts paragraphs.

Page 82 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriSRPages 6 Selection range that counts the number of
intersecting pages.

kWriSRAddress 7 The constant specifies a dot notation address that
does not rely on runtime information to re-create a
path to the selection that is specified. In other words,
the selection values returned remain valid between
closing and opening a document. A selection
address may contain 2 or more parts separated by a
dot.

It is an internal persistent addressing format that
allows the exact locating of a cursor position within
any OWrite object or the document.

Example: $getselection may return the two strings
"2.25" and "4.25". These two strings specify that the
characters between position 2 and 4 of the object
starting at overall position 25 are selected.

Note: Modifying the document may invalidate the
address.

kWriSRMouse 8 This constant can only be used with $getselection().
It returns the standard selection range
(kWriSRDefault) under the mouse pointer.

kWriSRPlainText
(v3.0)

9 If specified, the selection range will use the plain
text map that was created during the last save with
kWriTextCreateMap.

See also Plain Text Analyzes.

kWriSRBookmark
(v3.0)

10 Selection range for specifying a bookmark name in
parameter 1, parameter 2 and 3 are ignored.

See also Bookmarks.

kWriTblAct...
(v2.0)
Constants for use with the $tableaction() method.

Name Value Description

kWriTblActInsertRowBelow 1 Insert a row below the selected cells.

kWriTblActInsertRowAbove 2 Insert a row above the selected cells.

kWriTblActInsertColRight 3 Insert a column to the right of the selected cells.

kWriTblActInsertColLeft 4 Insert a column to the left of the selected cells.

kWriTblActInsertCellRight 5 Insert a cell to the right of the selected cells.

Page 83 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriTblActInsertCellLeft 6 Insert a cell to the left of the selected cells

kWriTblActDeleteCells 7 Delete the selected cells.

kWriTblActMergeCells 8 Merge the selected cells. The new cell will take on
the content and width of all the selected cells.

Note: It is currently not possible to merge cells that
belong to different rows. This feature will be added
in a future release.

kWriTblActSplitCellsHorz 9 Split the selected cell horizontally.The two new cells
will be of equal width occupying no more space than
the original cell.

kWriTblActSplitCellsVert 10 CURRENTLY NOT SUPPORTED

kWriTblActAlignLeft 11 Align the left edge of all selected cells.

kWriTblActAlignRight 12 Align the right edge of all selected cells.

kWriTblActPrevRow 13 Select the row above the current selected row.

kWriTblActNextRow 14 Select the row below the current selected row.

kWriTblActPrevCol 15 Select the column to the left of the current column.

kWriTblActNextCol 16 Select the column to the right of the current column.

kWriTblActPrevCell 17 Select the cell to the left of the current cell.

kWriTblActNextCell 18 Select the cell to the right of the current cell.

kWriTblActAboveCell 19 Select the cell above the current cell.

kWriTblActBelowCell 20 Select the cell below the current cell.

kWriTblApply...
(v2.0)
Constants for use with $curtblapplymode. These constants change the way table and cell
properties are read and assigned.

Name Value Description

kWriTblApplyCells 0 All property assignments and reads are applied to
the selected cells.This is the default behavior.

kWriTblApplyRows 1 All property assignments and reads are applied to
entire table rows that contain selected cells.

kWriTblApplyCols 2 All property assignments and reads are applied to
entire table columns that contain selected cells.

Page 84 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriTblApplyTable 3 All property assignments and reads are applied to
the entire table regardless of selection.

kWriTblRow...
(v2.0)
Constants for use with $curtblrowtype. These constants specify the type of the selected row(s).

Name Value Description

kWriTblRowNormal 0 Default row type.

kWriTblRowHeader 1 Header row type. Header rows are repeated at the
top of each page that the table occupies. Header
rows are useful for displaying column headers and
other header information.

kWriTblRowFooter 2 Footer row type. Footer rows are repeated at the
bottom of each page that the table occupies.Footer
rows are useful for displaying column totals and
other footer information.

kWriText...
Constants for use with the $savedata() and $loaddata() method when loading or saving plain
text.

Name Value Description

kWriTextFmtUTF16
(v2.2.0)

9 If specified, text is exported/imported as 16bit
unicode characters. This format includes a leading
BOM character.

kWriTextFmtUTF8
(v2.2.0)

10 If specified, text is exported/imported as 8bit
unicode characters.

kWriTextSaveSpecialChars 6 If specified, special chars such as internal object
place holders, are not stripped when exporting to
plain text

kWriTextCreateMap
(v3.0)

11 If true, OWrite will create a plain text map for use
with kWriSRPlainText.

See also Plain Text Analyzes.

kWriView...
Version: 1.61
Constants for use with the $pageview property.

Name Value Description

kWriViewNormal 0 Display document in normal view.

kWriViewPageLayout 1 Display document in page layout view.

Page 85 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

kWriViewField 2 Display document in field view. Text is wrapped to
the width of the field.

kWriWarn...
Version: 2.4.1
Constants specified in a list of warnings returned by $docwarnings.

Name Value Description

kWriWarnBadObjSize 1 Specified when a OWrite object was found with a
negative width or height. The object will have been
restored to the original width and height if possible.
The column pData1 will specify the objects ident
($curobjid). This can be used to select the object.

kWriWarnNone 0 No warning (not used)

Page 86 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Static Methods
$disablescreenupdates()
Syntax: OWrite.$disablescreenupdates()

or OWriteObjectRef.$disablescreenupdates()
Version/Platform: 2.1.2
This method is used together with $enablescreenupdates(). It disables screen updates to allow
Omnis methods to do large amounts of changes to OWrite documents without flashy redraws
on screen. These methods effect OWrite controls on all open windows.

Parameter Description

returns 0 (no error) if successful.

$docversion()
Syntax: OWrite.$docversion([xDocData])

or OWriteObjectRef.$docversion([xDocData])
Version/Platform: v3.0
This method returns the document version number for the specified binary document data.

Parameter Description

xDocData The binary OWrite document data for which the version
number is returned. If this parameter is omitted, OWrite will
return the current version number.

returns the internal document version number which may be one of the
following.

As can be seen from the table, the document version number is
not the same as the OWrite product version number.

Page 87 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$enablescreenupdates()
Syntax: OWrite.$enablescreenupdates()

or OWriteObjectRef.$enablescreenupdates()
Version/Platform: 2.1.2
This method is used together with $disablescreenupdates which must be called first and must
always be perfectly balanced. It enables screen updates after they have been disabled by a call
to $disablescreenupdates(). It allows Omnis methods to do large amounts of changes to OWrite
documents without flashy redraws on screen. These methods can be used with all Omnis
windows.

Parameter Description

returns 0 (no error) if successful.

$getfontlist()
Syntax: OWrite.$getfontlist(&lList,cCurFont,bCurBold,bCurItalic,bApplyMap,bSortInUse)
or OWriteObjectRef
.$getfontlist(&lList,cCurFont,bCurBold,bCurItalic,bApplyMap,bSortInUse)

Returns a list of font family names and supported typefaces as provided by the system. The
specified Omnis font name and bold/italic styles will select the appropriate lines in the list.

Note: When this method is called using an OWrite object instance, the list will show all font
family names that are in use in the current document, at the beginning of the list and separated
by an empty line from the remaining family names.

See also: Advanced Font Handling.

Parameter Description

lFamilyList The list variable that is to receive the list of family names. The
returned list consists of three columns.

- Family: The family name
- Typefaces: Sub-list of supported typeface names
- Used: Boolean indicating if the font is used in the document

The typeface sub-list for each font family consists of four
columns.

- Typeface: The typeface name, i.e. Bold
- OmnisFontName: The Omnis equivalent font name
- OmnisStyleBold: The Omnis bold style
- OmnisStyleItalic: The Omnis italic style

When a user picks a typeface, the Omnis font name, bold style
and italic style settings should be used to set $curfont,
$curbold and $curitalic.

cCurFont The Omnis font name setting ($curfont) to be used to map the
current selection to the appropriate family and typeface.

Page 88 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

bCurBold The Omnis bold style setting ($curbold) to be used to map the
current selection to the appropriate family and typeface.

bCurItalic The Omnis italic style setting ($curitalic) to be used to map the
current selection to the appropriate family and typeface.

bApplyMap If true, Omnis will limit the fonts to the fonts specified in the
OWrite Font Map that was previously loaded by calling
$loadfontmap().

bSortInUse (v3.0.3) If true (default), the returned list is sorted according to if the
font is in use. Fonts in use are separated by an empty line from
fonts that are not in use within an OWrite document.

lSizeList (v4.0.1) Returns list font heights for downloading to the JS-Client.

IMPORTANT: It is recommended that the OWrite font-
mapping feature is used to limit the fonts that are available on
the client. Please see the section on Advanced Font Handling
for further details.

returns 0 (no error) if successful.

$listfrombin()
Syntax: OWrite.$listfrombin(bBinaryListData)

or OWriteObjectRef.$listfrombin(bBinaryListData)

This method converts a List in binary format back to a list and returns the result.

Parameter Description

bBinaryListData The binary representation of a list. See OWrite.$listtobinary.

returns An Omnis list.

$listtobin()
Syntax: OWrite.$listtobin(lList)

or OWriteObjectRef.$listtobin(lList)

This method converts an Omnis List into binary data suitable for storing in a binary file on
disk.

Parameter Description

lList The Omnis list to be converted

returns Binary representation of an Omnis list.

Page 89 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$loadfontmap()
Syntax: OWrite.$loadfontmap(lFontmap[,bRestrictFonts])

or OWriteObjectRef.$loadfontmap(lFontmap[,bRestrictFonts])

This method should be called once during startup to load the font mapping table. When used
with the web-client, the font-mapping table can be loaded once into memory on the server, but
the table data must be copied to every client via an instance variable where it can be loaded
using the OWrite remote form control. The font map is used to map fonts that do not exist on a
platform to fonts that do, and to limit the fonts that can be used.

See also Advanced Font Handling and The OWrite-Font-Map.

Parameter Description

lFontmap An Omnis list containing variable number of columns for
mapping unknown font names between systems.

bRestrictFonts
(v3.0)

If true, the font map will limit the fonts that can be used with
OWrite to the fonts that are specified by the font map.

$loadstrings()
Syntax: OWrite.$loadstrings(cTableName)

You call this method if you need to translate OWrite into another language. You must load the
Omnis string table and set the appropriate column prior to calling this method. When finished,
you may unload the string table.

Parameter Description

cTableName Name of the table as specified when calling
StringTable.$loadstringtable().

$mergedocs()
Syntax: OWrite.$mergedocs(Data1,Data2,iMergeOptions,cPropertyList)

or OWriteObjectRef.$mergedocs(Data1,Data2,bNewPage,cPropertyList)

This method merges the binary data of two OWrite documents and returns the result.

Parameter Description

Page 90 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Data1 Binary data of first document.

(v2.12) When used with the window field or non-visual object,
this parameter can be #NULL and the document data passed in
the second parameter is merged with the loaded document.

Example:
Do OWriteObj.$loaddata(doc1)
Do OWriteObj.$mergedocs(#NULL,doc2)
Do OWriteObj.$mergedocs(#NULL,doc3)
;; etc
Do OWriteObj.$savedata(mergedDocData)

When calling $mergedocs in this way, instead of returning the
merged document data, OWrite will return 1 if successful.

Data2 Binary data of the document to be added to the end of the first
document.

iMergeOptions
(v3.5.0)

Specifies one or more of the kWriMerge... constants. Multiple
options are specified by adding them together.

Example:
...$mergedocs(doc1,doc2,
kWriMergePageBreak+kWriMergeNoPaginate)

cPropertyList
(v1.62)

Comma separated list of properties that are to be merged from
the second document, i.e.
“$docpaper,$docpaperlength,$docpaperwidth”. Only
properties that are listed in the Custom tab of the property
inspector and are document properties can be merged.
Properties that begin with $cur or are not stored with the
document and cannot be merged.

$pictconvto()
Syntax: OWrite.$pictconvto(SourceFormat,SourceData,DestFormat[,ConvDPI or IconID,
FillColor])

This method implements image conversion that works very much like the standard Omnis
function pictconvto(). In addition to the functionality the standard Omnis function provides,
OWrite’s $pictconvto can handle the conversion of non-shared picture formats such as Mac
PICTs and Windows enhanced meta files and Icons from #ICONS or the icon data files. When
converting images received from OWrite you should always use this function to ensure that
images will be converted correctly, regardless of source type.

Please note: It is not possible to convert Mac image types on Windows and vice versa.

Parameter Description

SourceFormat The source format of the image to be converted, i.e. “CS24”.
Use the standard Omnis function pictformat() to find out the
format of the image.

Page 91 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

SourceData The picture data.

When SourceFormat is “ICON”, the supplied variable is used
as temporary storage during conversion.

DestFormat This can be any of the picture formats supported by Omnis.

ConvDPI or IconID ConvDPI is used when converting Mac PICTs and Windows
meta files. These image types can contain drawing commands
that are usually embedded at screen resolution, but can scale to
higher resolutions without loss of quality and sharpness.
Generally this quality is lost when Omnis converts these
images to another format as Omnis uses the images default
resolution. By specifying a higher resolution OWrite will be
able to retain the images quality at the given DPI. However,
the images memory requirement will increase.

IconID (v2.0) must be specified if SourceFormat is “ICON”. The
specified Icon will be converted to a picture of the requested
format. The IconID can include the Omnis Icon Size constants.

FillColor If SourceFormat is “ICON”, the fill color is used to set all
transparent pixels of the icon.

Example:
;convert an OWrite image to JPEG
;get the image data from the current OWrite object
Calculate sourceData as ivEdit.$curobjresult
;get the images format
Calculate sourceFormat as pictformat(sourceData)
;now convert the image
Calculate destData as
OWrite.$pictconvto(sourceFormat,sourceData,”JPEG”,150)

$popupmenulist()
Syntax: OWrite.$popupmenulist(iHwnd,lMenuList,bBelowControl,iHorzAdjust,iVertAdjust)
Version: 1.63
This method is identical to $popupmenu except it does not require an OWrite window control.

Parameter Description

iHwnd The $framehwnd or $hwnd value of any Omnis window or
window field.

for all remaining parameters please see the method $popupmenu() below

Page 92 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Window/NV Object Properties
Name Type Description

$backcolor
(v2.0)

Integer Standard Omnis field property for specifying the
color of all clear pixels in the background pattern
of the OWrite gray area around a document page.
See also $forecolor and $backpattern.

$backpattern Integer Standard Omnis field property for specifying the
background pattern of the OWrite gray area
around a document page. See also $forecolor and
$backcolor.

$checkoverflow
(v3.6.5)

Boolean If kTrue, OWrite prevents users from adding
more content than can be displayed in the field by
executing an undo when content was caused to
overflow the fields boundary. See also:
evOverflow and kWriOverflow...

$convtoshared Boolean If kTrue, images imported via RTF will be
converted to CS24 format. If kFalse, the images
original format is retained.

$curalign Integer Specifies the alignment of the current selection. If
the selected text has different alignment, #NULL
is returned. Use the constants kWriAlign...

$curbold Boolean Specifies the bold state of the current selection. If
the selected text has different states, #NULL is
returned.

$curbookmark
(v3.0)

Character Specifies the bookmark name for the selected
text.

See also Bookmarks and $getbookmarks().

$curfirstindent Number 2dpt Specifies the first line indent of the current
selection. If the selected text has different
indents, #NULL is returned. The first line indent
is specified as an offset from $curleftindent.

$curfont Character Specifies the font name of the current selection. If
the selected text has two or more fonts, #NULL is
returned.

$curfontcolor Integer obsolete see $curtextcolor.

$curfontsize Integer Specifies the font size of the current selection. If
the selected text has two or more font sizes,
#NULL is returned.

Page 93 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$curhighlight
(v3.0)

Integer sets or clears the current highlight colour. It takes
standard rgb() values or any of the Omnis colour
constants. To clear the highlight, you can assign
#NULL or the kColorDefault option from the
Omnis colour picker.

$curitalic Boolean Specifies the italic state of the current selection.
If the selected text has different states, #NULL is
returned.

$curleftindent Number 2dp Specifies the left indent of the current selection.
If the selected text has different indents, #NULL
is returned.

$curlinespacing Integer Specifies the line spacing of the current selection.
If the selected text has different line spacing,
#NULL is returned. Use the constants
kWriLSpace...

$curlistisbullet Boolean Returns kTrue if the current paragraph has a
bullet. This property is provided to support the
bullet list check button in the OWrite interface.
Setting this boolean will change $curlisttype to
kWriListBullet. Clearing this boolean will change
$curlisttype to kWriListNone.

$curlistisnum Boolean Returns kTrue if the current paragraph is
numbered. This property is provided to support
the numbered list check button in the OWrite
interface. Setting this boolean will change
$curlisttype to kWriListDecimal. Clearing this
boolean will change $curlisttype to
kWriListNone.

See also $curlistnumstart

Page 94 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$curlistlevel
(v5.0)

Integer Specifies the indent level of the list item. By
default this is zero for all list items in a single
level list. Increasing this value will create a sub-
list with its own list counter. Certain key presses
will manipulate the list:

• "Return" key: pressing the Return key
on an empty list entry will reduce the list
level by one or turn off the list if the list
level is already zero.

• "Tab" key: pressing the tab key at the
beginning of a list item will increase the
list level by one.

• "Backspace" key: pressing the
backspace key at the beginning of the
list item will reduce the list level by one
or turn off the list if the list level is
already zero.

When increasing a list level, oWrite will search
for previous list entries of the same level in the
document and use the same list type for the newly
indented list entry. If no other list entry of the
same level is found, oWrite will choose some
default similar to choices observed by the latest
MS-Word. Of course, after oWrite picks the
initial list type, the user or your code can change
this to another type by assigning $curlisttype.

$curlistnumstart
(v3.0)

Integer sets or clears the starting number for numbered
lists. Setting $curlistnumstart to anything other
than zero sets the start number for the selected
paragraph. Subsequent paragraphs that do not
have $curlistnumstart set, will follow on from the
previous paragraph. Assigning zero to
$curlistnumstart clears the start number.

$curlisttype Integer Specifies the paragraphs list type. Use the
constants kWriList...

$curobjalign Integer Specifies the current objects alignment. This
property is only applicable for in-line objects.
One of the kWriObjAlign... constants.

Page 95 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$curobjautosize Boolean If kTrue, calculated text boxes will be sized to fit
text.

The property can also be set for table cells. By
default this is set to kTrue for all cells. Setting it
to kFalse will prevent the content from resizing a
table cell/row. The content is clipped instead.

$curobjborderstyle Integer Specifies the border style of a text box. One of
the kWriBord... constants.

$curobjbottommargin Number 2dp Distance between the text box's bottom border
and its text.

$curobjcalc
(v3.0)

Character The data calculation for calculated fields, text-
boxes, table cells and pictures. The specified
calculation can be any valid Omnis calculation or
notation. The calculation or notation must return
the appropriate data for the field. See also
$curtblcalc, $evalcalcs and $evallocal.

$curobjclickcalc
(v3.0)

Character The calculation that is executed when
$curobjclicks is enabled and the user clicks the
object. This calculation can be empty in which
case the event evObjClick is send to the $event
method.

$curobjclicks Boolean If kTrue, the object can be clicked by the user
like a hyper-link. The objects $curobjclickcalc
calculation is evaluated when a click is recorded
on the field. This calculation would typically call
one of your notation methods to execute the click.
If $curobjclickcalc is empty, the evObjClick
event is triggered instead.

$curobjcontainer
(v3.0)

Boolean Container objects (headers, footers, text boxes
and table cells) may contain objects such as in-
line calculations, pictures and info objects.
Traditionally when the selection is adjacent to
one of the in-line objects, all $curobj... properties
will apply to the in-line object. Sometimes it is
desirable to address the container object instead.
Setting the property $curobjcontainer to kTrue,
redirects all $curobj... properties to the container
object containing the selection, regardless of the
selection within the container object.

$curobjdata Varied obsolete in v3.0, see $curobjname and
$curobjcalc.

Page 96 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$curobjdatadpi
(v3.0)

Integer returns the current DPI of the image as
determined by the image resolution and the
current width and height of the image box in the
document. When assigning this property, an
image can be scaled down to a desired quality,
based on the current bounding box. This property
will give end users some control over image
quality and memory requirements if this feature is
exposed by the interface.

See also $maximagesize

$curobjdatasrc
(v3.0)

Character Source (Omnis calculation) for picture data. If
not empty, the picture data is not saved with the
document but fetched when required by
evaluating this calculation.

See also Picture alternative data

$curobjdisplay
(v3.0)

Varied The display text for calculated fields, text-boxes,
and table cells, or the display icon id for
calculated pictures. If empty, the fields, text-
boxes, and cells will display $curobjname and
calculated pictures will display the typical place
holder image.

$curobjevalmaxheight
(v5.0)

Number 2dp This property applies to text boxes and table
cells.

Setting $curobjevalmaxheight to a non-zero positive value, limits the box or cells vertical
growth to accommodate data to the specified centimetres or inches.

If the assigned value is negative, the height is limited to the number of specified lines of
text based on the font line height that is used inside the cell. The inner maximum cell
height is calculated assuming single paragraph of text that may or may not wrap. In other
words the inner cell height is based on the following formula:

(font ascent+font descent) * (-$curobjevalmaxheight) + $spacebefore + $spaceafter

This feature is useful to limit the height of pictures to perhaps conform to the expected
number of lines of text in the other cells of the row. Equally, cells containing text can be
limited to the same number of lines by assigning the same max value to all cells in a row.

$curobjfmt Integer Specifies the current objects formatting. One of
the kWriObjFmt... constants.

$curobjframeoptions Integer Specifies the framing options for the selected
cells. See constants kWriFrame... for more
details.

Page 97 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$curobjheight Number 2dp The height of the current object in centimeters or
inches.

$curobjhorzoffset Number 2dp Horizontal offset from objects anchor point in
centimeters or inches.

$curobjid Integer (read-only) Returns the unique ID of the currently selected
object.

$curobjfillcolor Integer The objects background fill color. (24 bit RGB)

$curobjleftmargin Number 2dp Distance between the text box's left border and its
text.

$curobjlinecolor Integer The border line color of a text box. (24 bit RGB)

$curobjlinesize Number 2dp The border line size of a text box. The size is
specified in Points (1 Point = 1/72 inch). The
overall size of the border will depend on the
border style (i.e. single line, double line, etc).

$curobjlinestyle Integer Specifies the border line style of a text box. One
of the kWriLine... constants.

$curobjlockaspect Boolean If kTrue, when object is sized, the aspect ratio is
maintained. (Picture objects only)

$curobjname
(v3.0)

Character The internal name of the OWrite object. Applies
to the calculated field, picture and text box.

See also $curobjdisplay.

$curobjnoenter
(v3.0)

Boolean Setting this property to true for text boxes or table
cells, prevents the user from editing the content
of that text box or cell.

$curobjorigheight Number 2dp The current objects original height in centimeters
or inches. Mainly used for picture objects.

$curobjorigwidth Number 2dp The current objects original width in centimeters
or inches. Mainly used for picture objects.

$curobjresult
(v1.50)

Varied For all objects, returns the objects data. See also
$curobjdata.

From version 1.63 this property can be assigned
to force the object to show the given result as if it
had been evaluated.

$curobjrightmargin Number 2dp Distance between the text box's right border and
its text.

Page 98 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$curobjshowrtf
(v1.63)

Boolean If kTrue, a calculated field will display the
unevaluated RTF if the objects calculation
contains simple RTF (the calculation string
begins with “{\rtf”)

$curobjstripempty
(v1.62)

Boolean If kTrue, the object will strip empty lines from
calculation results. (calculated fields, table cells)

$curobjtooltip
(v1.62)

Character Tool-tip text for the current object.

$curobjtopmargin Number 2dp Distance between the text box's top border and its
text.

$curobjtype Integer (read-only) Returns the type of the current object. It returns
one of the kWriObjType... constants. Possible
return values are; kWriObjTypeNone,
kWriObjTypePict, kWriObjTypeCalc,
kWriObjTypeCalcPict, kWriObjTypeTextbox
and kWriObjTypeTableCell

$curobjuserdata
(v2.2.4)

Character | Date |
Number | List |
Row

This property supports a limited set of data types:
Character, Date, Number, List or Row (we
recommend you use a character, or better still a
row variable to allow for future expansion of the
data). It can contain any data that you wish and is
useful for storing your own custom information
with your OWrite document object. The custom
data is saved with the OWrite document and is
maintained in RTF. Every OWrite object, i.e.
Table cell, Text box, Picture and Calculated field,
has it’s own storage. The OWrite table object has
a separate property $curtbluserdata.

$curobjvertoffset Number 2dp Vertical offset from objects anchor point in
centimeters or inches.

$curobjwdbottom Number 2dp The distance between object and wrapped text at
the bottom of the object.

$curobjwdleft Number 2dp The distance between object and wrapped text to
the left of the object.

$curobjwdright Number 2dp The distance between object and wrapped text to
the right of the object.

$curobjwdtop Number 2dp The distance between object and wrapped text at
the top of the object.

$curobjwidth Number 2dp The width of the current object in centimeters or
inches.

Page 99 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$currightindent Number 2dp Specifies the right indent of the current selection.
If the selected text has different indents, #NULL
is returned.

$curspaceafter Integer Specifies the paragraph spacing at the end of the
paragraph. The spacing is specified in Points (1
Point = 1/72 of an inch)

$curspacebefore Integer Specifies the paragraph spacing at the beginning
of the paragraph. The spacing is specified in
Points (1 Point = 1/72 of an inch)

$curstrikethrough
(v2.0)

Integer Specifies the strike-through state of the current
selection. If the selected text has different states,
#NULL is returned. Valid range is 0 to 2.

$curstylename Character Specifies the style name of the current selection.
If the selected text has two or more styles,
#NULL is returned.

$cursubscript Boolean Specifies the subscript state of the current
selection. If the selected text has different states,
#NULL is returned.

$cursuperscript Boolean Specifies the superscript state of the current
selection. If the selected text has different states,
#NULL is returned.

$curtabs Character Specifies the tabs of the current selection. If the
selected text has different tabs, #NULL is
returned. Tabs are specified as a single character
indicating the tab type followed by the position as
a number with 2 decimal places. Tabs must be
separated by spaces.

L = left aligned tab
C = center aligned tab
R = right aligned tab
D = decimal point tab

Example:
"L2.50 C5.00 R7.50 D10.25"

$curtblalign Integer Specifies the horizontal alignment of the table.
Same as $curalign.

$curtblapplymode Constant Changes the way property changes are applied to
the table. The default is that properties changes
are assigned to the current selection. See
kWriTblApply... for more details.

Page 100 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$curtblcalc
(v3.0)

Character The data calculation for a table object. The
specified calculation can be any valid Omnis
calculation or notation. The calculation or
notation must return an Omnis list or the name of
an Omnis list variable which must be a task or
instance variable. See also $curobjcalc,
$evalcalcs and $evallocal.

$curtblcellspacing Number 2dp The spacing between table cells in centimeters or
inches.

$curtblcolumnwidth Number 2dp The width of the selected table column(s) in
centimeters or inches.

$curtbldata Character obsolete in v3.0, see $curtblname and
$curtblcalc.

$curtblextendable Boolean If kTrue, a new row is added every time a user
tabs out of the last cell of the table.

$curtblid Integer Unique ID of the current table object.

$curtblindent Number 2dp Specifies the amount in centimeters or inches by
which the table is indented from the left of
document margin.Same as $curleftindent.

$curtblmultidatarows
(v2.2.2)

Boolean If true, all table rows of the type
kWriTblRowNormal are mapped to a single
Omnis list row.

$curtblname
(v3.0)

Character The internal name of the table object. See also
$curtblcalc.

$curtblpagefooters Boolean If kTrue, the current table field will repeat footer
rows on each page that the table crosses.

$curtblpageheaders Boolean If kTrue, the current table field will repeat header
rows on each page that the table crosses.

$curtblresult List The result of calculation specified by $curtbldata.
This property can also be directly assigned to
display an Omnis list in an OWrite table object.

$curtblrowevalcansplit
(v3.0)

Bool If kTrue, table row can be split accross pages
during evaluation (display/printing only).

See also Split Table Rows and
Editing Evaluated Documents.

$curtblrowheight Number 2dp The height of the selected table row(s) in
centimeters or inches.

Page 101 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$curtblrowid Integer Unique ID of the current table row

$curtblrowtype Constant The type of the current table row. One of the
kWriTblRow... constants.

$curtbluserdata
(v2.2.4)

Character | Date |
Number | List |
Row

This property supports a limited set of data types:
Character, Date, Number, List or Row (we
recommend you use a character, or better still a
row variable to allow for future expansion of the
data). It can contain any data that you wish and is
useful for storing your own custom information
with your OWrite table object. The custom data is
saved with the OWrite document and is
maintained in RTF. Other OWrite objects such as
a Table cell, Text box, Picture and Calculated
field, has it’s own storage too, see
$curobjuserdata.

$curtextcolor
(v3.0 - was $curfontcolor)

Integer Specifies the font color of the current selection. If
the selected text has two or more font colors,
#NULL is returned. (24 bit RGB)

$curunderline Boolean Specifies the underline state of the current
selection. If the selected text has different states,
#NULL is returned.

$dataname
(fat-client v2.2.2)

Character Specifies the name of the Omnis field that
supplies or receives the document data. Using
this property makes $savedata() and $loaddata()
obsolete. This property must be used with web-
client but should only be used in fat-client for
simple edit fields. You must also specify the
appropriate format type in $datanametype.

$datanametype
(v2.2.2)

Constant Specifies the format type for storing document
data in the field specified by $dataname. One of
the kWriFmt... constants.

$deftab Number 2dp Specifies the default tab width in centimeters or
inches.

$docbottommargin Number 2dp The document bottom margin in centimeters or
inches.

$docbulletchar
(v5.0)

Character Can be assigned to specify a different character
for bullet lists.

Note for jsoOWrite: Custom bullet chars are not
supported by all browsers (i.e. Safari, IE and
some other minor browsers do not support it)

Page 102 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$docdecimaltabchar
(v.3.8.5)

Character Specifies a alternative decimal tab character, such
as a comma. By default this property is set to the
english standard decimal point. The decimal tab
character is a property of the document and is
saved with the document data. Thus the property
need only be assigned when creating new
documents or when converting documents that
were created in prior versions.

$docleftmargin Number 2dp The document left margin in centimeters or
inches.

$docorientation Integer Specifies the document’s paper orientation using
the standard Omnis orientation constants.

$docpagecount
(v1.50)

Integer (read-only) Returns the documents number of pages.

$docpagenumber
(v1.50)

Integer (read-only) Returns the page number of the current selection

$docpaper Integer Specifies the document paper size using the
standard Omnis paper size constants.

$docpaperlength Number 2dp Specifies the paper length in centimetres or
inches.

$docpaperwidth Number 2dp Specifies the paper width in centimetres or
inches.

$docrightmargin Number 2dp The document right margin in centimetres or
inches.

$docscale Integer Scales the document on screen. The valid range is
25% to 400%. Default is 100%. The document
scaling is stored with the document when saved.

$doctopmargin Number 2dp The document top margin in centimeters or
inches.

$docuserdata (any) This property can be set to any type of data, i.e.
binary, row variables, list or simply text. The
custom data is saved with the OWrite document
data.

$docwarnings
(v2.4.1)

List (read-only) Returns a list of warnings that occurred when
loading a document. The list is defined as Code,
Text, Data1, Data2, Data3, Data4. The column
Code specifies on of the kWriWarn... constants.

Page 103 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$editstylename Character If this property is not empty, any reads and writes
will apply to specified style. If it is empty, reads
and writes apply to the current selection.

$evalcalcs Boolean Setting this to kTrue will evaluate calculated
objects and display the result. Setting it back to
kFalse will remove the results and display the
objects in their unevaluated state. See also
$evallocal, $curobjcalc and $curtblcalc.

$evalkeeplf
(v1.8.0)

Boolean When true, both CR and LF characters are
imported during evaluation with the meaning that
CR characters denote a paragraph break and LF
characters denote a new line within a paragraph
(soft-return). As a consequence, calculations that
return plain text for insertion may not include
CR-LF character combinations to denote end of
paragraphs. Single CR characters must be used
instead, regardless of the platform.

$evallocal
(v1.5.0)

Boolean If set to kTrue documents are evaluated using the
context local to the calling method. The calling
method or the method’s class must provide the
variables or methods required by the documents
calculated fields. If this property is kFalse, it is
the encapsulating object or window class that
must provide the required variables or methods.
See $evalcalcs, $curobjcalc and $curtblcalc.

$evalpermanent
(v5.3.0)

Boolean (read only) When saving data with the parameter
bMakeDataPermanent and $evalcalcs set to
kTrue, $evalpermanent of the saved document
will be set and $evalcalcs cleared.

See $savedata().

$firstsel Integer Start position of the current selection.

Note: $firstsel may be greater than $lastsel if the
selection was made from right to left.

$firstselcol Integer First selected column. A column is deemed
selected even if only one cell in the column is
selected. See also $lastselcol.

$firstselrow Integer First selected row. A row is deemed selected even
if only a single cell in the row is selected. See
also $lastselrow.

Page 104 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$firsttabiconid
(v3.0)

Integer If non-zero, this property tells OWrite to use
alternative icons from #ICONS or the Omnis icon
files for painting the tab symbols in the horizontal
ruler. The property $firsttabiconid must be set to
the ID of the first tab icon. Your tab icons must
have consecutive IDs and you must specify four
icons for the four possible tabs in the following
order: left, centre, right, decimal. The OWrite
Plus examples include sample icons in
#ICONS.OWriteButtons IDs 12012 to 12015.

$footermargin
(v3.0)

Number 2dp The distance between the bottom edge of the
paper and the bottom of the page footer in
centimetres or inches.

See also Headers & Footers.

$forecolor
(v2.0)

Integer Standard Omnis field property for specifying the
colour of all set pixels in the background pattern
of the OWrite gray area around a document page.
See also $backcolor and $backpattern.

$grammaroptions
(v5.4)

Integer Specifies the grammar options for oWrite. This
property can be assigned one or more of the
kWriGrammar... constants. The constants a bit
constants and multiple constants can be assigned
at the same time.

$headermargin
(v3.0)

Number 2dp The distance between the top edge of the paper
and the top of the page header in centimetres or
inches.

See also Headers & Footers.

$headfootenabled
(v3.0)

Boolean If true, the control will show headers and footers
and allow the editing of their content and
document flow.

See also Headers & Footers and $headfootnoedit.

$headfootfirstpage
(v3.0)

Boolean If true, document has different header and footer
on the first page.

See also Headers & Footers.

$headfootnoedit
(v5.0)

Boolean If set to kTrue, the content of headers and footers
cannot be edited, although they are displayed if
$headfootenabled is kTrue.

Page 105 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$headfootoddeven
(v3.0)

Boolean If true, document has different headers for odd
and even pages.

See also Headers & Footers.

$holdupdates Boolean Assigning this property to kTrue will stop all
redraws. It prevents flashing and increases
performance when inserting and formatting large
amounts of text from an Omnis method.
Restoring this property to kFalse will update the
contents

$horzscroll Boolean If kTrue, the horizontal scroll bar is shown.

$hscroll Integer Horizontal scroll position in multiples of 8 screen
units.

$isplaintext
(v1.61)

Boolean This property can be used to check if formatting
changes have been made that require the storage
of rich text. When loading a plain text document
you can set this property to kTrue, and before a
save you can query it to check if the user has
applied any formatting. Pasting RTF from other
word processors or inserting objects will also
clear this flag.

Note: If $isplaintext is set to kTrue, OWrite copy
operations will only place plain text on the
clipboard.

$lastsel Integer End position of the current selection.

Note: $lastsel may be smaller than $firstsel if the
selection was made from right to left.

$lastselcol Integer Last selected column. A column is deemed
selected even if only one cell in the column is
selected. See also $firstselcol.

$lastselrow Integer Last selected row. A row is deemed selected even
if only a single cell in the row is selected. See
also $firstselrow.

$linktextcolor
(v3.0)

Integer Specifies the text colour that is used for
calculated fields that have $curobjclicks set to
true.

$linktextstyle
(v3.0)

Integer Specifies one or more of the Omnis style
constants kNormal, kBold, kItalic and
kUnderline. It is used for calculated field that
have $curobjclicks set to true.

Page 106 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$maximagesize
(v3.0)

Integer This is a property of the OWrite component. It
allows one to specify the maximum size in pixels
of a pasted or imported image. If non-zero,
images are scaled down if their height or width
exceeds the specified maximum. The aspect ratio
of the image is maintained.

See also $curobjdatadpi.

$modified Boolean If kTrue, the document has been modified since
the last call to $savedata(). When calling
$savedata() this flag is cleared.

$newprimeasure
(v3.0)

Integer if non-zero, text during printing is measured
using more accurate 1000 point measurements to
position individual characters for more cross-
platform accuracy (true-type fonts only).

See also Important Note on Printing

$nocursor Boolean If kTrue, the flashing input cursor is hidden, but
text can still be selected.

$nohilite Boolean If kTrue, selected content is not highlighted and
text cannot be copied.

$nospellcheck
(v3.0)

Boolean Can be set to true to temporarily disable spell
checking as you type. Any modifications made
while true, will not be spell checked, even when
this property is set to false again. If you need to
spell check some of the changes that were made,
you can use the $spell method to invalidate the
selection.

$notableoutline
(v3.0)

Boolean If set to kTrue, table cell’s will not display an
outline if they have not been given a border.

$notabs Boolean If kTrue, OWrite ignores the tab key preventing
users from entering tabs in the document.

$nouserscroll
(v3.8.0)

Boolean If set to kTrue, it will disable all scrolling
initiated by the keyboard or the mouse. However,
it will still be possible to scroll the content by
assigning the notation $hscroll and $vscroll.

$owriteobj Integer (read-only) Returns ID of the control or object. This ID is
used to pass to other OWrite objects.

$pageview Integer Specifies the view of the document. It can be set
to normal, page layout or field view. See
kWriView... constants.

Page 107 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$papercolor
(v1.51)

Integer Specifies the document background paper color.
This setting is used for display purposes only and
does not affect the printed output.

$papercontinuous
(v1.60, changed in v3.0)

Boolean If kTrue, the document is formatted as a
continuous sheet of paper. The document height
will grow as content is added to the document.
When the user causes the document height to
change an evPaperChanged event is generated.

This property can also be used to with evaluated
documents to allow users to edit evaluated table
objects.

See also Editing Evaluated Documents.

$pasteoptions
(v5.1)

Integer This property encapsulates a control based set of
options that control handling of clipboard data
when users paste document content from other
applications or owrite (see kWriPaste...
constants). By default this property is set to

kWriPastePlainText+kWriPasteRichText+
kWriPasteImages

$pasterawpicts
(v3.5.0)

Boolean If kTrue, images pasted from the clipboard are
converted and stored as a raw PNG.

$printdpi Integer Specifies the resolution that is used to measure
and render text for display on screen. Valid
ranges are 72 to 2400 DPI. The default value is
600 DPI. This property does not affect OWrite on
the Macintosh when used with Omnis Studio
version 4.0 or better. There is currently no point
in setting the value to anything greater than 600
DPI, as this is the maximum resolution used by
Omnis during printing. When printing to lower
resolution printers, it may be worthwhile to
change the resolution to match the printers
resolution for a more accurate representation on
screen.

$readonly
(v2.0)

Boolean Specifies the current read-only state of the
document. If kTrue, the OWrite field can be
viewed, scrolled, and content can be selected for
copying. In read-only mode the flashing caret
will appear a little fatter and smaller. Documents
can also be loaded as read-only in which this
property will also be set to kTrue. See
$loaddata().

Page 108 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$redotext Character (read-only) Returns text that can be displayed in the tool tip
of your redo button.

$screendpi Integer Specifies the DPI at which documents are
rendered on screen. If it is set to anything other
than the default, documents are rendered in a
cross platform manner at the specified resolution.
For example setting this property to 96 (the
Windows screen DPI), documents will be scaled
on the Macintosh to a size comparable to that on
Windows whereas documents will not be scaled
on Windows. See constants kWriScrDPI...

$showcms Boolean If kTrue, rulers will display centimetres.

$showinvisibles
(v3.0)

Boolean This property enables or disables the display of
invisible characters and other markers, i.e.
spaces, tabs, paragraph breaks and bookmarks.
When enabled, these characters are displayed
using light blue circle, chevron and paragraph
symbols.

$showpaperrulers Boolean If kTrue, the document rulers are shown.

$spellinterval Integer Interval of background spell check in
milliseconds. Valid range is between 1 and 10. At
each interval, OWrite will check up to two words.
If this property is set to 10, OWrite will be able to
check a maximum of 200 words per second, with
a setting of 1 this is increased to 2000 words a
second. The background spell check is used when
a document is first opened and every time you
change text in the document.

$styleafter Character Specifies the style of the next paragraph when
return is pressed at the end of the current
paragraph. This property can only be assigned if
$editstylename is set.

$undoenabled Boolean If kFalse, any changes made to properties or
document content will not be placed on the undo
stack.

$undotext Character (read-only) Returns text that can be displayed in the tool tip
of your undo button.

$vertscroll Boolean If kTrue, the vertical scroll bar is shown.

$vscroll Integer Vertical scroll position in multiples of 8 screen
units.

Page 109 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$watermarks
(v3.8.5)

List This property can be assigned with the name of a
list (instance or task variable) or list data directly.
Please see the section Printing Watermarks in the
chapter “Designing OWrite”.

Page 110 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Window/NV Object Methods
$addstyle()
Syntax: OWriteObjectRef.$addstyle(cStyleName[,cBasedOn])

Version: 2.0

Adds a new style to the document. This action cannot be undone. See also $removestyle.

Parameter Description

cStyleName The name of the new style. A error is returned if the name is
already in use.

cBasedOn The name of an existing style. The new style will copy the
style properties of the specified style. An error is returned if
the style does not exist.

returns 0 (no error) if successful

$convselection()
Syntax: OWriteObjectRef
.$convselection(&iFirstSel,&iLastSel,&iObjID,iSelRange,iSelRangeTo[,bTotalCount])

Version: 2.0

Converts the given selection range to another selection range. For example one could convert
the current selection to get the count of the selected words.
Do ref.$getselection(iFirstSel,iLastSel,iObjID,kWriSRDefault)
Do ref.$convselection(iFirstSel,iLastSel,iObjID,kWriSRDefault,kWriSRWords,1)
Calculate word_count as iLastSel-iFirstSel

or one could get the word count of the entire document
Calculate iFirstSel as kWriSelectStart
Calculate iLastSel as kWriSelectEnd
Calculate iObjID as 0
Do ref.$convselection(iFirstSel,iLastSel,iObjID,kWriSRDefault,kWriSRWords,1)
Calculate word_count as iLastSel-iFirstSel

See also $getselection(), $setselection(), kWriSR... and kWriSelect...

Parameter Description

iFirstSel Start of selection range to be converted

iLastSel End of selection range to be converted

iObjID The object to which the selection belongs

iSelRange The selection range type of the given selection, one of the
kWriSR... constants.

iSelRangeTo The selection range to which to convert to, one of the
kWriSR... constants.

Page 111 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

bTotalCount Specifies if we are interested in a total count that should also
include text in table cells and text boxes.

$docinsert()
Syntax: OWriteObjectRef.$docinsert(iType,data and/or additional info...)

Inserts text or an object at the current position replacing the current selection.

Parameter Description

iType Specifies the type of the object or data, one of the
kWriObjType... constants. See the following method
descriptions for the allowed types and their parameters

data or additional info The parameters that follow the type depend on the object type
being inserted. Please see the additional descriptions below

returns 0 (no error) if successful

Syntax: OWriteObjectRef.$docinsert(kWriObjTypeChar,cChar)

Inserts an individual character.

Parameter Description

cChar The character to be inserted. You can use one of the
kWriChar... constants.

Syntax: OWriteObjectRef.$docinsert(kWriObjTypeText,cText[,iInsertOptions,custom
parameters])

Inserts a string of text.

Parameter Description

cText Specifies the text to be inserted. If the text begins with "{\rtf"
and ends with "}", the text is imported using the RTF parser.

In addition, any plain text that starts with the keyword “{red}”
will be inserted as red text. Calculated fields may return the
red color keyword as part of their result.

iInsertOptions Specifies the additional kWriInsert... options, i.e.

...,kWriInsertSelect+kWriInsertKeepStyles,...

Default is kWriInsertOver.

Note: In oWrite, this parameter was traditionally a boolean
parameter that indicated if the inserted text was to be selected
and therefore does not support kWriInsertAfter. Only jsoWrite
supports kWriInsertAfter. To achieve the same result in oWrite
desktop, use $setselection prior to executing $docinsert.

Page 112 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

custom parameters Name value pairs specifying additional parameters when
inserting text. Example

...,kWriInsertKeepStyles, kWriLoadRawPicts, kTrue)

the above is currently the only supported custom parameter.

Syntax: OWriteObjectRef.$docinsert(kWriObjTypePict,pPicture[,iInsertOptions])

Inserts a Picture.

Parameter Description

pPicture Specifies the picture data. The picture data must be converted
to an Omnis shared picture (CS24 or CS32) or must be
specified as raw PNG or JPEG data* via a binary variable, if
documents are to remain cross platform.

IMPORTANT NOTE: PNG images with transparency (alpha
pixels) will display correctly on screen, but when printed the
transparency is lost as Omnis currently does not support the
printing of transparent pixel data within images.
* OWrite currently does not support any other raw formats

iInsertOptions Specifies the additional kWriInsert... options, i.e.

...,kWriInsertSelect+kWriInsertApplyMaxImageSize)

Default is kWriInsertSelect.

Syntax: OWriteObjectRef.$docinsert(kWriObjTypeCalc,cCalculation[,iInsertOptions])

Inserts a calculated picture object.

Parameter Description

cCalculation Specifies the calculation in the following format
"Name;Omnis Calculation". The calculation must evaluate to
text or RTF.

iInsertOptions Specifies the additional kWriInsert... options, i.e.

...,kWriInsertSelect+kWriInsertKeepStyles)

Syntax: OWriteObjectRef.$docinsert(kWriObjTypeCalcPict,cCalculation)

Inserts a calculated picture object.

Parameter Description

cCalculation Specifies the calculation in the following format "Name;Omnis
Calculation". The calculation must evaluate to a picture in the
format as specified by “$docinsert(kWriObjTypePict...” above.

Page 113 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

iInsertOptions Specifies the additional kWriInsert... options, i.e.

...,kWriInsertSelect)

Syntax: OWriteObjectRef.$docinsert(kWriObjTypeTextbox, cCalculation, iBorderStyle,
iBorderLineStyle, iBorderColor,nBorderLineSize, nTextBoxWidth, nRowHeight)

Inserts a text box object.

Parameter Description

cCalculation Specifies the calculation in the following format "Name;Omnis
Calculation" or an empty string if no calculation is required.
The calculation must evaluate to text or RTF.

iBorderStyle The border style, one of the kWriBord... constants.

iBorderLineStyle The border line style, on of the kWriLine... constants.

iBorderColor The border color, 24bit RGB.

nBorderLineSize The border line size in points.

nTextBoxWidth The text box width in centimeters or inches.

nRowHeight The text box height in centimeters or inches.

Syntax: OWriteObjectRef.$docinsert(kWriObjTypeTable, cCalculation, iBorderStyle,
iBorderLineStyle, iBorderColor, nBorderLineSize, iColumnCount, iRowCount,
nColumnWidth, nRowHeight)

Version: v2.0

Inserts a table object.

Parameter Description

cCalculation Specifies the calculation in the following format "Name;Omnis
Calculation" or an empty string if no calculation is required.
The calculation must evaluate to a list.

iBorderStyle The border style, one of the kWriBord... constants.

iBorderLineStyle The border line style, on of the kWriLine... constants.

iBorderColor The border color, 24bit RGB.

nBorderLineSize The border line size in points.

iColumnCount The number of columns

iRowCount The number of rows

nColumnWidth Default column width in centimeters or inches.

nRowHeight Default row height in centimeters or inches.

Page 114 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$docprint()
Syntax: OWriteObjectRef.$docprint(cDocumentName,bShowJobsetup,bKeepJobOpen)

Platforms: Fat-client only

Prints the loaded document to the current Omnis report destination.

Parameter Description

cDocumentName The name to be displayed during printing.

bShowJobsetup If kTrue, the job setup dialog will be shown.

bKeepJobOpen (v2.0) If kTrue, the job is kept open so subsequent calls to $print will
print the document to the same print job. The last call to $print
must pass kFalse to close the job.

bBorderless (v3.8.6) If kTrue, the document is printed as if printing to a border-less
printer, allowing content to fill the entire paper. This is
especially useful when printing to PDFDevice.

returns 0 (no error) if successful

$editclear()
Syntax: OWriteObjectRef.$editclear()

Clears the selection.

Parameter Description

returns 0 (no error) if successful

$editcopy()
Syntax: OWriteObjectRef.$editcopy()

Copies the selected text or object to the clipboard.

Parameter Description

returns 0 (no error) if successful

$editcut()
Syntax: OWriteObjectRef.$editcut()

Copies the selected text or object to the clipboard and then clears it from the document.

Parameter Description

returns 0 (no error) if successful

$editpaste()
Syntax: OWriteObjectRef.$editpaste()

Paste the contents of the clipboard at the current position, replacing the current selection.

Page 115 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Parameter Description

returns 0 (no error) if successful

$editredo()
Syntax: OWriteObjectRef.$editredo()

Redo the last undo operation.

Parameter Description

returns 0 (no error) if successful

$editselectall()
Syntax: OWriteObjectRef.$editselectall()

Selects the entire document.

Parameter Description

returns 0 (no error) if successful

$editundo()
Syntax: OWriteObjectRef.$editundo()

Undo the last edit operation.

Parameter Description

returns 0 (no error) if successful

$endundo()
Syntax: OWriteObjectRef.$endundo(cText)

This method must be called after a call to $startundo(). It groups the last set of changes into one
undo operation.

Parameter Description

cText Specifies the text for the undo item. Do not include the word
Undo as part of the text. This is provided by OWrite.

returns 0 (no error) if successful

$findinit()
Syntax: OWriteObjectRef.$findinit(&iFindOWriteObjRef[,bEntireDocument])

Platform: Fat-client only

Before you can call $findnext() or $replace(), you must call this function to build an array of
ranges to be searched. This array will include, either the current selection if there was one, or
all searchable text of the document including text inside text boxes.

Parameter Description

Page 116 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

iFindOWriteObjRef The $owriteobj value of the OWriteSearch object that will be
initialised.

bEntireDocument If kTrue, the entire document is searched, otherwise the
current selection is searched.

returns 1 if successful or 0 if initialisation failed or a negative error
code

$findnext()
Syntax: OWriteObjectRef.$findnext(&iFindOWriteObjRef)

Platform: Fat-client only

Find the text or formatting as specified by the given object. Before you can call this method,
you must have called $findinit() to initialise the find object with the text ranges to be searched.

Parameter Description

iFindOWriteObjRef The $owriteobj value of the OWriteSearch object that contains
the search criteria.

returns 1 if the search was successful or 0 if it failed or a negative
error code

$getbookmarks()
Syntax: OWriteObjectRef.$getbookmarks(&lList)

Returns a single column list of bookmark names.

See also Bookmarks and $curbookmark.

Parameter Description

lList The list variable that is to receive the bookmark names.

returns 0 (no error) if successful

$getobjslist()
Syntax: OWriteObjectRef.$getobjslist(lList,iObjType)

Populates the list with information of objects in the current document.

Parameter Description

Page 117 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

lList The list that is to receive the object information. It must be
formatted prior to calling this method. The columns of the list
are;

• Type - One of the kWriObj... constants.
• Ident - The objects ID.
• FirstSel - The starting position of the object.
• LastSel - The end position of the object.
• Name - The display name of the object.
• Calculation (v1.62, optional) - The objects calculation.
• CalcResult (v1.62, optional) - The calculation result.
• DocResult (v2.0, optional) - The result taken from the

document

The information from the FirstSel, LastSel and Ident columns
can be used to select the object by calling $setselection().

iObjType The type of the objects for which to return information. One of
the kWriObjType... constants. If kWriObjTypeNone is
specified, all objects are returned.

returns 0 (no error) if successful

$getselbounds()
Syntax: OWriteObjectRef.$getselbounds(iTop,iLeft,iBottom,iRight)

Returns the co-ordinates of the current selection in screen co-ordinates. This method is useful if
you need to move an obscuring window to show the current selection.

Parameter Description

iTop The top co-ordinate.

iLeft The left co-ordinate.

iBottom The bottom co-ordinate.

iRight The right co-ordinate.

returns 0 (no error) if successful

$getselpageoffset()
Syntax: OWriteObjectRef.$getselpageoffset(iPage,nHorzOffset,nVertOffset,bEndSel)

Returns the offset from the top-left of the page and the page number of the start selection or
end selection in cms or inches.

Parameter Description

iPage Contains the page number on return

nHorzOffset Returns the horizontal offset of the selection from the left edge
of the page.

Page 118 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

nVertOffset Returns the vertical offset of the selection from to the top edge
of the page.

bEndSel Specifies if the start or the end of the current selection is
required.

returns 0 (no error) if successful

$getselection()
Syntax: OWriteObjectRef.$getselection(&iFirstSel,&iLastSel,&iObjID,iSelRange)

Version: 2.0

Returns the current selection range in the specified format. It can also be used to count the
selected words or rows or other counts supported by this method.
Do ref.$getselection(iFirstSel,iLastSel,iObjID,kWriSRRows)
Calculate row_count as iLastSel-iFirstSel

See also $setselection() and $convselection().

Parameter Description

iFirstSel The variable that is to receive the start of the current selection.

iLastSel The variable that is to receive the end of the current selection.

iObjID The variable that is to receive the ID of the selected object.

iSelRange Specifies the type of the required range, one of the kWriSR...
constants.

returns 0 (no error) if successful

$getstylelist()
Syntax: OWriteObjectRef.$getstylelist(&lList)

Populates the list with the style names from the loaded document.

Parameter Description

lList The list to receive the style names.

returns 0 (no error) if successful

$globalpos()
Syntax: OWriteObjectRef.$globalpos(iLocalPos)

Converts a selection local to the current object to a global document position. This is useful if
one needs to know where a position is in relation to other objects in the document.

Parameter Description

iLocalPos The character position inside a text box or table cell.

returns The character position global to the document.

Page 119 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$::insert()
Renamed to $docinsert(). Existing code will continue to work. See case 1965 in version 5.3
release notes for more details.

$loaddata()
Syntax: OWriteObjectRef.$loaddata(xDocData[,iFormat,bReadOnly])

Sets the document data.

Parameter Description

xDocData The document data

iFormat One of the kWriFmt... constants specifying the format of the
data. Default is kWriFmtDefault.

bReadOnly If kTrue, the document cannot be modified but you can still
select and copy text or objects if $enabled is set to kTrue.
Default is kFalse. See also $readonly.

returns 0 (no error) if successful

$picturefrompage()
Syntax: OWriteObjectRef.$picturefrompage(iPage,nMaxWidth,nMaxHeight,&pPicture)

Version: 2.0

Creates an Omnis picture of the specified page in the specified resolution. Ideal for creating
thumb-images of your documents or document templates.

Parameter Description

iPage The page number.

nMaxWidth The width of the image in screen units (pixels)

nMaxHeight The height of the image in screen units (pixels)

pPicture The omnis picture variable that receives the image

returns 0 (no error) if successful

$popupmenu()
Syntax: OWriteObjectRef.$popupmenu(lMenuList,bBelowControl,iHorzAdjust,iVertAdjust)

Pops-up a menu from the given list at the current cursor position, or below the control the
mouse is hovering over. Also see OWrite.$popupmenulist()

Parameter Description

Page 120 of 138

https://supportpublic.brainydata.com/rn/owrite_jsowrite_5300.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

lMenuList A four column list specifying the menu items. The columns are
as follows; Text, ID, Flags, SubmenuItems. IDs 1 to 100 are
reserved and must not be used by custom menu items. The
following special IDs can be used to implement edit menu item
that are managed appropriately by OWrite; 1 = Undo, 2 =
Redo, 3 = Cut, 4 = Copy, 5 = Paste, 6 = Clear, 7 = Select All.
See kWriMenuItemEdit... constants.

An ID of -1 indicates that the fourth column contains menu
items for the hierarchical menu.

The flags column specifies one or more status flags, see
kWriMenuItem... constants.

bBelowControl Position the menu at the bottom edge of the control under the
mouse.

iHorzAdjust Additional horizontal offset in screen units.

iVertAdjust Additional vertical offset in screen units.

returns the ID of the menu item that was selected or zero if the user
canceled the menu.

$print()
$::print()
Renamed to $docprint(). Existing code will continue to work. See case 1965 in version 5.3
release notes for more details.

$removestyle()
Syntax: OWriteObjectRef.$removestyle(cStyleName)

Version: v2.0

Removes the specified style from the document. This action cannot be undone. See also
$addstyle().

Parameter Description

cStyleName The style to be removed. If the style is in use or the style does
not exist, an error is returned

returns 0 (no error) if successful

$replace()
Syntax: OWriteObjectRef.$replace(&iFindOWriteObjRef,&iReplaceOWriteObjRef,bAll)

Platforms: (Fat-client only)

Replaces the text or styles using the given search data with the text or styles supplied by the
replace data. Before you can call this method, you must have called $findinit() to initialise the
find object with the text ranges to be searched.

Page 121 of 138

https://supportpublic.brainydata.com/rn/owrite_jsowrite_5300.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Parameter Description

iFindOWriteObjRef The $owriteobj value of the OWriteSearch object that contains
the search criteria.

iReplaceOWriteObjRef The $owriteobj value of the OWriteSearch object that contains
the replace data.

bAll If kFalse, only the next occurrence of the search criteria is
replaced. If kTrue, all occurrences are replaced.

returns 1 if text was found to be replaced

$savedata()
Syntax: OWriteObjectRef.$savedata(&xDocData[,iFormat,bMakeDataPermanent,custom])

Returns the document data. See also $dataname and $datanametype.

Parameter Description

xDocData The binary or text variable to receive the document data.

iFormat The desired format of the data. One of the kWriFmt...
constants specifying the format of the data. Default is
kWriFmtDefault.

bMakeDataPermanent
(updated in v5.3.0)

If kTrue and $evalcalcs is kTrue, embedded calculations are
replaced by their result data. Further evaluation of the saved
document will not be possible. In version 5.3 or later, saving
data with this flag will clear the $evalcalcs flag and set the
$evalpermanent flag in the saved document data when saving
to kWriFmtDefault.

[custom] (v1.50) Some export formats may require you to specify additional
information specific to the chosen format. Custom parameters
are identified by OWrite constants followed by the value. That
means for every custom parameter you pass two additional
parameters to $savedata.

For example:
Do OWriteRef.$savedata(var, kWriFmtHTML, kFalse,
kWriHtmlBgColor, rgb(255,200,200),
kWriHtmlNoAutoSize, kTrue,...)

See kWriHtml..., kWriSave... and kWriText for details of
custom parameters for this method.

returns 0 (no error) if successful

Page 122 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

$setdatafromsrc()
Syntax: OWriteObjectRef.$setdatafromsrc(pPicture)

This function is used in the web-client to set the picture data after an evGetDataFromSrc event
was received and the picture data has been fetched from the server.

Parameter Description

pPicture The picture data for the picture object that generated the
evGetDataSrc event.

returns returns 1 if successful, 0 otherwise

$setselection()
Syntax: OWriteObjectRef.$setselection(iFirstSel,iLastSel,iObjID[,iSelRange])

Changes the current selection. See also $getselection(), $convselection(), kWriSR... and
kWriSelect...

Note: When selecting rows and cells within a table object, the HIWORD in a selection range
specifies the row number and the LOWORD specifies the column number. To select column
two in row three one would specify 3*65536+2.
The code $setselection(3*65536+2,3*65536+3,table_id) would select columns 2 and 3
in row 3 in the table specified by table_id.

Parameter Description

iFirstSel The start of the selection range.

iLastSel The end of the selection range.

iObjID The ID of the object to be selected. If the specified object is a
text box or table cell, the selection range applies to the text
inside the text box.

iSelRange (v2.0) Specifies the type of the given range, one of the kWriSR...
constants. By default the range is assumed to be a standard
selection range, character based including white space and
object place holders. Example: The following call
$setselection(0,5,0,kWriSRWords) would select words 1 to 5.

returns 0 (no error) if successful

$spell()
Syntax: OWriteObjectRef.$spell(iAction)

Platforms: Fat-client only

Performs the specified spell checker action.

Parameter Description

iAction The action to perform. One of the kWriSpll... constants.

Page 123 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

returns 0 (no error) if successful

$startundo()
Syntax: OWriteObjectRef.$startundo()

Call this method if you need to combine a number of changes into one undo operation. When
you have made your changes you must call $endundo().

Parameter Description

returns 0 (no error) if successful

$tableaction()
Syntax: OWriteObjectRef.$tableaction(iAction,bExecute)

Version: 2.0

Executes the specified table action, or tests if the specified action can be executed.

Parameter Description

iAction The table action to execute or test. One of the kWriTblAct...
constants.

bExecute If kTrue, execute the action, otherwise merely test if the action
can be executed.

returns 1 if successful or the action can be executed, 0 otherwise.

Page 124 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Window Object Events
evOverflow
Version: 3.6.5
This event is generated when the user caused an overflow to occur and $checkoverflow is set to
kTrue. See also $checkoverflow and kWriOverflow...

Event Parameter Description

pOverflowType One of the kWriOverflow... constants, indicating what caused
the overflow to occur.

evClick
Version: 2.0
This event is generated when a click occurs on an object in the document

no event parameters

evContextObject
This event is generated when the user right/ctrl clicks while over an object. You should present
the user with the appropriate context menu.

Event Parameter Description

pX The horizontal screen co-ordinate.

pY The vertical screen co-ordinate.

evContextSpell
Platforms: (Fat-client only)

This event is generated when the user right/ctrl clicks while over an incorrectly spelled word.
You should present the user with a menu allowing the user to choose a word from the list of
suggestions.

Event Parameter Description

pX The horizontal screen co-ordinate.

pY The vertical screen co-ordinate.

pList List containing suggestions.

evContextText
This event is generated when the user right/ctrl clicks while over some text. You should present
the user with the appropriate context menu.

Event Parameter Description

pX The horizontal screen co-ordinate.

pY The vertical screen co-ordinate.

Page 125 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

evDoubleClick
Version: 2.0

no event parameters

evFormatChanged
This event is generated when the current formatting has changed. You should update any
interface items that display formatting information to the user.

no event parameters

evGetDataFromSrc
This event is generated when a picture field has a data source calculation that requires
evaluating. After fetching the image data from the server, the method $setdatafromsrc must be
used to set the image data.
Version/Platform: v3.0 - Web-Client only

Event Parameter Description

pObjID The $curobjid value of the picture object

pObjName The $curobjname value of the picture object

pObjCalc The $curobjdatasrc value of the picture object

evIndentChanged
Version: 1.63
This event is generated when the user changes the paragraph indents via the OWrite ruler
controls. See also evMarginChanged and evTabChanged.

no event parameters

evKillFocus
Version: 1.63
This event is generated when the OWrite window control or remote form control looses the
focus. The evSetFocus and evKillFocus events are very similar to the standard evBefore and
evAfter events, but are more reliable as these events are always generated when OWrite
receives and loses the focus. Sell also evSetFocus.

no event parameters

evMarginChanged
Version: 1.63
This event is generated when the user changes the document margins via the OWrite ruler
controls. See also evIndentChanged and evTabChanged.

no event parameters

Page 126 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

evModified
Version: 1.62
This event is generated when the user modifies the document and $modified was previously
false. If the $modified flag is subsequently cleared a new event is generated when the user
modifies the document again.

no event parameters

evMultiFind
Version: v3.0
This event is generated when the multi-selection-find state changes from shown to hidden or
vice versa.

See also Multi-Selection Find.

Event Parameter Description

pSelectionShown If true, the current multi-find is displaying all matching words
or phrases in the window object. If false, the highlights are
removed.

evObjClick
Version: v3.0
This event is generated when the user clicks an OWrite object for which $curobjclicks is true
and $curobjclickcalc is empty, except in the web-client when evObjClick is always generated
when $curobjclicks is true.

Event Parameter Description

pObjID The internal ID of the object that was clicked

pObjName The object’s name as specified by $curobjname.

pObjCalc The object’s click calculation as specified by
$curobjclickcalc. This will always be empty for fat-client, but
may contain a calculation to be executed on the server in web-
client implementations. The web-client cannot evaluate custom
calculations, so evObjClick is always generated regardless of
the value of $curobjclickcalc.

evPasteFF
This event is generated when the user selects the Paste from file option from the edit menu.
Typically you should present a file selection dialog and convert the loaded data to a format
compatible with OWrite for inserting at the current position. The example library implements a
method that supports a number of picture formats, plain text and RTF files.

no event parameters

Page 127 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

evPaperChanged
Version: 1.60
This event is generated when $papercontinuous is kTrue, and the paper height has changed
because the user has added or removed content from the document.

Event Parameter Description

pY The amount in centimetres or inches by which the height has
been altered.

pDocHeight (v2.0) The absolute graphical document height in centimetres or
inches. This measurement is the same that is used by OWrite
to set the scroll ranges of the vertical scroll-bar.

evProgress
Version: 3.5.0
This event is generated during loading, saving, exporting, importing or printing of large
documents where any of these actions may result in a 2 second or longer delay.

Event Parameter Description

ProgressType Indicates the action being performed. One of the
kWriProgress... constants.

ProgressPercent Value between 1% and 100%, indicating the progress so far.

evSelChanged
This event is generated when the current selection changes.

no event parameters

evSetEditMenu
Version: 1.62
This event is only relevant when the standard edit menu is replaced. It is generated when the
undo and redo menu item text requires updating.

no event parameters

evSetFocus
Version: 1.63
This event is generated when the OWrite window control or remote form control receives the
focus. The evSetFocus and evKillFocus events are very similar to the standard evBefore and
evAfter events, but are more reliable as these events are always generated when OWrite
receives and loses the focus. Sell also evKillFocus.

no event parameters

Page 128 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

evStylesChanged
This event is generated when a style has been added. When you receive this event you can call
the method $getstylelist() to update your list of styles. You can entirely rely on this event to
maintain your list of styles for your interface.

no event parameters

evTabChanged
Version: 1.63
This event is generated when the user changes the paragraph’s tabs via the OWrite ruler
controls. See also evMarginChanged and evIndentChanged.

no event parameters

Page 129 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Report Object Properties
Name Type Description

$dataname Binary Specifies the Omnis field that contains the binary
document data. See also $dataname and
$datanametype for window/form objects.

$fitimages Boolean If set to kTrue, images are moved to the next
page if they don't fit on the current page.

$headfootenabled
(v3.0)

Boolean If set to kTrue and $ignorepos is true, OWrite
will print headers and footers from the document
data.

$ignorepagebreaks Boolean If set to kTrue, page breaks in OWrite documents
are ignored and will not generate new pages
when encountered during printing.

$ignorepos Boolean If set to kTrue, the report object position is
ignored and the document data is laid out
according to the Page Layout view of the OWrite
control.

$watermarks
(v3.8.5)

List This property can be assigned with the name of a
list (instance or task variable) or list data directly.
Please see the section Printing Watermarks in the
chapter “Designing OWrite”.

Page 130 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

OWriteSearch - NV Object Properties
Name Type Description

$completeword Boolean If kTrue, only complete words are included in the
search.

$ignorecase Boolean If kFalse, the search is case sensitive.

$multiselectbackcolor
(v3.0)

Integer The back colour for highlighting all matching text
within the document.

See also Multi-Selection Find.

$multiselection
(v3.0)

Boolean If true, searches will highlight all matching text
within the document.

See also Multi-Selection Find.

$multiselectlist
(v3.0)

List The list of selection ranges for all text that
matches the search criteria.

See also Multi-Selection Find.

$multiselecttextcolor
(v3.0)

Integer The text colour for highlighting all matching text
within the document.

See also Multi-Selection Find.

$multiwordfind
(v3.0)

Boolean If true, the search phrase is treated as individual
words and all matching words are included in the
list of matches.

See also Multi-Selection Find.

$owriteobj Integer Unique object ID. Use this property when calling
the methods $findinit(), $findnext() and
$replace(). Do not pass the Omnis object.

$selectbackcolor
(v3.0)

Integer The back colour for highlighting the current
matching text.

See also Multi-Selection Find.

$selecttextcolor
(v3.0)

Integer The text colour for highlighting the current
matching text.

See also Multi-Selection Find.

$text Character The search or replace text.

Page 131 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

(other) varied Properties for specifying formatting options for
search and replace actions.

$curstylename, $curfont, $curfontsize,
$curfontcolor, $curitalic, $curbold,
$curunderline, $curstrikethrough,
$cursuperscript, $cursubscript, $curalign,
$curlinespacing, $curleftindent,
$currightindent, $curfirstindent, $curtabs,
$curspacebefore, $curspaceafter, and
$curlisttype.

Any of these properties that are not NULL, will
be included in the search.

Page 132 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

OWriteSearch - NV Object Methods
$getresultlist()
Syntax: OWriteSearchRef.$getresultlist(&lList,iSelRange,bIncludeRowText)

Version: v3.0

Returns a list of search matches. Can only be used when $multiselection is true, and after
$findinit() has been called.

See also Multi-Selection Find.

Parameter Description

lList The list variable that will receive the list of found matches.
The returned list has the following columns.

- FirstSel: The start of the selection range.
- LastSel: The end of the selection range.
- ObjID: ID of the object containing the match.
- ObjPos: Global pos of the object.
- PageNumber: The page number for the match.
- RowText: The text of the entire row, containing the match.

iSelRange Specifies the selection range mode for the FirstSel and LastSel
columns. One of the kWriSR... constants.

bIncludeRowText If true, each match will include the entire text of the row in the
column RowText.

returns 0 (no error) if successful

$setresultlist()
Syntax: OWriteSearchRef.$setresultlist(&lList,iSelRange)

Version: v3.0

Sets the result list and positions the current selection to the match in the current line of the list,

See also Multi-Selection Find.

Parameter Description

lList The updated list

iSelRange Specifies the selection range mode for the FirstSel and LastSel
columns. One of the kWriSR... constants.

returns 0 (no error) if successful

Page 133 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Using the OWrite Ruler
The OWrite ruler can be used to manipulate a paragraphs tabs and indents and the top, left, right
and bottom document margins.

Tabs
Without adding any custom tabs to a paragraph, tab characters can be
inserted into the document by pressing the tab key and text will be
positioned according to the OWrite default tab position.

Using the ruler you can place, remove and move tabs. Supported tabs
are left, centre, right and decimal. Once a custom tab is placed the
OWrite default tab position is ignored up to the last custom tab in the
paragraph. If more tab characters are inserted than available custom tabs, the OWrite default tab
position will be used again after the last custom tab.

Placing a Tab
Repeatedly click the tab button to the left of
the ruler until the desired tab style is shown.

Now click in the ruler to place the
tab.

Removing a Tab
Click and drag the tab away from the ruler and let go. A
trash can will appear while dragging outside the ruler.

Moving a Tab
Click and drag the tab to the left or right to move a tab.

Developer Note:
The default tab position
can be changed via the
$deftab property.

Page 134 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Indents
Using the ruler you can change a paragraph’s left, right and first line indents.

Changing both left and first line indent
Click and hold the hanging indent button and drag to
the desired location in the ruler.

Changing first line indent
Click and hold the first line indent button (top
button) and drag to the desired location in the ruler.

Changing left indent
Click and hold the left indent button and drag to the
desired location in the ruler.

Page 135 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Document Margins
The ruler can also be used to change the overall document
margins by grabbing the edge between the white ruler area
and the gray margin area.

For example, to change the top margin click and drag the
edge as shown in the image.

Page 136 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

OWrite Cursor Keys
Standard Key Behaviour
The table below shows cursor key combinations and the OWrite behaviour. There are two types
of actions, those that move the input cursor and those that scroll the document window.

OWrite Action Macintosh Keys Windows/Linux Keys

Previous character left-arrow left-arrow

Next character right-arrow right-arrow

Previous word Option & left-arrow Ctrl & left-arrow

Next word Option & right-arrow Ctrl & right-arrow

Previous paragraph Option & up-arrow Ctrl & up-arrow

Next paragraph Option & down-arrow Ctrl & down-arrow

Beginning of line Command & left-arrow Home

End of line Command & right-arrow End

Beginning of document Home Ctrl & Home

End of document End Ctrl & End

Scroll left Command & Option & left-
arrow

Ctrl & Option and left-arrow

Scroll right Command & Option & right-
arrow

Ctrl & Option and right-arrow

Scroll up Command & Option & up-
arrow

Ctrl & Option and up-arrow

Scroll down Command & Option & down-
arrow

Ctrl & Option and down-
arrow

Scroll page up Page Up Page Up

Scroll page down Page Down Page Down

Page 137 of 138

w
w
w
.b
ra
in
yd
at
a.
co
m

OWrite Documentation 10 Dec 2022 at 22:08

Special Key Behaviour
When OWrite is put in a special display only mode the key behaviours are as follows.

Developer Note:
The special display only mode is achieved by setting the properties $nocursor and $nohilite to
kTrue.

OWrite Action Macintosh Keys Windows/Linux Keys

Beginning of document Home Home

End of document End End

Scroll left left-arrow left-arrow

Scroll right right-arrow right-arrow

Scroll up up-arrow up-arrow

Scroll down down-arrow down-arrow

Scroll page up Page Up Page Up

Scroll page down Page Down Page Down

Paragraph List Key Behaviour
Version 5.0

When the input cursor is inside a bullet or numbered list, the following keys can be used to
manipulate the list indent level.

Key Press Action

“Return” key pressing the Return key on an empty list entry will reduce the
list level by one or turn off the list if the list level is already
zero.

“Tab” key pressing the tab key at the beginning of a list item will increase
the list level by one.

“Backspace” key pressing the backspace key at the beginning of the list item
will reduce the list level by one or turn off the list if the list
level is already zero.

Page 138 of 138

	About OWrite
	Introduction
	Installing the Software
	Deploying your software
	Documentation
	History

	Introduction
	Overview
	Examples
	External component Library

	Designing OWrite
	Introduction
	Contents
	OWrite Basics
	Formatting Text
	Advanced Formatting
	Context Menu
	Bookmarks
	Undo, Redo, Copy and Paste
	Paste from file
	View Options
	Saving and Loading Documents
	Saving to HTML
	Find and Replace
	Printing
	Printing Watermarks
	Spell checking
	Translation
	Font Mapping
	Document Objects
	OWrite Version Numbers
	Document Version Numbers

	Advanced Font Handling
	The OWrite-Font-List
	The OWrite-Font-Map

	Headers & Footers
	Header & Footer options
	Interface Behaviour and Appearance
	Selecting Headers & Footers
	Header and Footer Object Types
	Printing
	Exporting & Importing

	Data Merging
	OWrite Tables
	Table Row Types
	Linking a Table to an Omnis List
	Split Table Rows
	Editing Evaluated Documents

	Multi-Selection Find
	Plain Text Analyzes
	Web Client
	Limitations
	Differences

	Designing JS-OWrite
	Introduction
	Examples
	Data Merging Examples
	Browser Compatibility
	PHP Spell Checker (v5.0)
	Known Issues

	Contents
	JS-OWrite Basics
	Client Controls
	Server Object

	Your First Form
	Create the required classes
	Place the OWrite object
	Creating a new document
	Add text formatting controls
	Add style and font controls
	Saving the document
	Some final words

	JS-OWrite Quick Reference
	Property-Control Properties
	Client Methods

	Examples Reference
	Contents
	Main Examples
	 wOWrite
	 wOWriteLables

	Formatting Interface
	 wFormatBorderBackground
	 wFormatBullets
	 wFormatDocLink
	 wFormatField
	 wFormatFont
	 wFormatPaper
	 wFormatParagraph
	 wFormatPicture
	 wFormatStyle
	 wFormatSuper
	 wFormatTable
	 wFormatTextbox
	 wOWriteTools
	 wOWriteToolsFields
	 wOWriteToolsHF

	Insert Windows
	 wOWriteInsertCustomField
	 wOWriteInsertDocument
	 wOWriteInsertTable

	Other Windows
	 wFindReplace
	 wFindStyle
	 wFontMapping
	 wOWriteDocInfo
	 wOWriteExport
	 wOWriteLabelDetails
	 wOWriteMail
	 wOWritePrint
	 wOWriteSnapShot
	 wOWriteTestSelection
	 wOWriteViewDocObjects

	The Menus
	 mFormat
	 mFormatContext
	 mFormatFind
	 mInsert
	 mInsertHF
	 mOWrite

	The Objects
	 oOWrite
	 oOWriteSearch
	 oOWriteSession

	Other classes
	 rOWrite
	 rOWriteMailMerge
	 sOWriteLabels
	 tOWriteLabels
	 tbOWrite
	 tbOWriteLabels

	JS-Client Classes
	 rfOWriteSuper
	 rfOWriteJSDemoFullSize
	 rfOWFormatSuper
	 rfOWFormatDocument
	 rfOWFormatField
	 rfOWFormatInfo
	 rfOWFormatNone
	 rfOWFormatParagraph
	 rfOWFormatPicture
	 rfOWFormatTable
	 rfOWFormatText
	 rfOWFormatTextbox
	 rfOWOptions
	 objOWriteEval
	 rmOWriteContext
	 rmInsertObject
	 rmTableOptions
	 rtOWriteJS
	 rtGetPDF

	External Component Reference
	Introduction
	Contents
	Constants
	kWriBord...
	kWriChar...
	kWriErr...
	kWriFmt...
	kWriFrame...
	kWriGrammar...
	kWriHtml...
	kWriInsert...
	kWriLine...
	kWriList...
	kWriLoad...
	kWriMenuItem...
	kWriMenuItemEdit...
	kWriMerge...
	kWriObjAlign...
	kWriObjFmt...
	kWriObjType...
	kWriObjTypeInfo...
	kWriOutput...
	kWriOverflow...
	kWriPaste...
	kWriProgress...
	kWriSave...
	kWriScrDPI...
	kWriSelect...
	kWriSpll...
	kWriSR...
	kWriTblAct...
	kWriTblApply...
	kWriTblRow...
	kWriText...
	kWriView...
	kWriWarn...

	Static Methods
	$disablescreenupdates()
	$docversion()
	$enablescreenupdates()
	$getfontlist()
	$listfrombin()
	$listtobin()
	$loadfontmap()
	$loadstrings()
	$mergedocs()
	$pictconvto()
	$popupmenulist()

	Window/NV Object Properties
	Window/NV Object Methods
	$addstyle()
	$convselection()
	$docinsert()
	$docprint()
	$editclear()
	$editcopy()
	$editcut()
	$editpaste()
	$editredo()
	$editselectall()
	$editundo()
	$endundo()
	$findinit()
	$findnext()
	$getbookmarks()
	$getobjslist()
	$getselbounds()
	$getselpageoffset()
	$getselection()
	$getstylelist()
	$globalpos()
	$::insert()
	$loaddata()
	$picturefrompage()
	$popupmenu()
	$print()
	$::print()
	$removestyle()
	$replace()
	$savedata()
	$setdatafromsrc()
	$setselection()
	$spell()
	$startundo()
	$tableaction()

	Window Object Events
	evOverflow
	evClick
	evContextObject
	evContextSpell
	evContextText
	evDoubleClick
	evFormatChanged
	evGetDataFromSrc
	evIndentChanged
	evKillFocus
	evMarginChanged
	evModified
	evMultiFind
	evObjClick
	evPasteFF
	evPaperChanged
	evProgress
	evSelChanged
	evSetEditMenu
	evSetFocus
	evStylesChanged
	evTabChanged

	Report Object Properties
	OWriteSearch - NV Object Properties
	OWriteSearch - NV Object Methods
	$getresultlist()
	$setresultlist()

	Using the OWrite Ruler
	Tabs
	Placing a Tab
	Removing a Tab
	Moving a Tab

	Indents
	Changing both left and first line indent
	Changing first line indent
	Changing left indent

	Document Margins

	OWrite Cursor Keys
	Standard Key Behaviour
	Special Key Behaviour
	Paragraph List Key Behaviour

