
w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

PDFDevice version 5
by Brainy Data Limited

About PDFDevice
Introduction
PDFDevice is an Omnis external component that adds PDF output to the Omnis printing device
group. The component is fully integrated with Omnis Studio and allows the developer to take
real control over PDF generation with very little effort. It installs directly in the Omnis tree and
can be distributed as part of this tree without the need for further installations on the client
machine.

For latest changes see History of Enhancements below

Downloading the Software and Examples
If you have not done so already you can download the demo or full release software components
from the following locations:

Demo Software and examples: http://www.brainydata.co.uk/demos/download.htm

Release Software: http://www.brainydata.co.uk/support/pdfdevice_su.htm

Installing the Software
PDFDevice Desktop/Server Control

As a general rule, the downloaded folder containing the software will be organised so that you
may follow these generic steps.

There are a number of components to install and the component names vary between platforms.
It typically contains folders for different versions of studio, i.e. studio_810, studio_1000,
studio_1010 and studio_1020, referring to Studio versions 8.1.0, 10.0, 10.1 and 10.2
respectively.

1. Open the appropriate Omnis Studio folder. Always use the latest version that is not later
in version than your version of Omnis Studio. For example, for Studio 8.1.7 you would
use components from the studio_810 folder and not the studio_1000 folder.

The Omnis Studio folder will contain an additional folder called XCOMP. This may or may not
be suffixed with a three letter platform identifier, i.e. _mac, _win or _lin.

2. Copy the components from inside XCOMP to your Omnis installation. You will find
identical named folders inside the Omnis application support folder (macOS) or
executable folder (winOS). On Mac OSX you may need to create this folder inside the
~/Library/Application Support/Omnis/Omnis Studio {version}/ folder. On windows, you
will find the XCOMP folder alongside the Omnis executable.

Page 1 of 53

http://www.brainydata.co.uk/demos/download.htm
http://www.brainydata.co.uk/support/pdfdevice_su.htm

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Deploying your software
Please refer to the license agreement for rules on deployment.

Please also read the open source license information that is included in the software download
tree.

Page 2 of 53

https://support.brainydata.com/license/pdfdevice_license.htm

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

History of Enhancements
Below is a summary of the most recent enhancements.

Version Enhancements

5.0 • New static $file... functions: $filemerge(), $fileencrypt(), $filesign(),
$filereaddata(), $filegetlasterror().

• Support for Acroform fields.

4.0 • Support for transparency with RAW png and CS32 images.

• Better support for “assignpdf” and “showpdf” client commands. See latest
Javascript Client examples.

• New Brainy Data PDF Server features. See section Multi-Threaded Server
in the chapter “Designing PDFDevice”.

• New methods $startserver(), $stopserver(), $initparams(),
$settempfilename() and $setmemoryoutput().

• New examples PDFDeviceAndJSClient.

3.1 • New device parameter kDevPdfPrintScale, to manually apply scaling which
was previously set automatically via the $scale property.

3.0 • Default device name changed to BrainyPDF (see technical note TN0021)

• PDF/A support. See new device parameters kDevPdfaEnabled,
kDevPdfaOutputInfo and kDevPdfOutputProfile.

• Non-true-type Font substitution. See new device parameter
kDevPdfSubstituteFont.

• Device parameter kDevPdfIgnoreFontStyle now obsolete.

• Bold and italic synthesising (see technical note TN0017)

• Improved font mapping and support for non-Western languages such as
Thai, Korean, Chinese or Arabic when the chosen font does not support
these languages.

• Printing to memory. New static method $getmemoryoutput.

• Substantially updated to use latest OS X core text handling.

• Studio 6 support

• New version number support (see technical note TN0022)

Page 3 of 53

https://demos.brainydata.com/software/pdfdevice_and_jsclient.zip
http://www.brainydata.com/supportpublic/tn/tn0021.pdf
http://www.brainydata.com/supportpublic/tn/tn0017.pdf
http://www.brainydata.com/supportpublic/tn/tn0022.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Introduction
PDFDevice is a simple to use external component that provides powerful PDF generation
capabilities. Installation and preparation merely take a few minutes before you will be able to
print your first PDF file.

Overview
The PDFDevice software consists of the following components

1. The external plug-in (pdfdevice.dll in winOS and pdfdevice.xcomp in macOS)

2. The OWrite Document Manager examples which demonstrate various uses of
PDFDevice.

3. The PDFDevice and JSClient example which demonstrates various ways of producing
and displaying PDF files when using the JS Client and Omnis JS Server.

For an introduction on how to integrate the PDFDevice software into your library, please read
the chapter Designing PDFDevice.

Examples
In the previously mentioned example libraries, you will find a small number of classes that
demonstrate the use of the PDFDevice software. These classes are mainly concerned with the
PDF advanced options interface and consist of windows and the startup task. The JS Client
examples are a little more comprehensive and include many more classes that demonstrate the
various ways of using PDF device with JS Clients. For a description of the example classes
please read the chapter Examples Reference.

External component Library
The external component library provides the printing device. A number of constants are defined
for setting and getting device properties. These constants can be accessed from the Omnis
Catalog -> Constants -> PDFDevice. For a description of the device parameters please read the
chapter External Component Reference.

The external device does not implement any interface with the exception of the parameters pane
for the Omnis destination dialog. All that is provided is an entry field and a browse button for
selecting a destination file name, and the advanced options button.

PDFDevice Main Features
Acroform Fields Support (v5.0)

PDFDevice supports the embedding of Acroform fields in Omnis reports and in conjunction with
the static $filereaddata() method, it makes it now possible to produce PDF forms that can be
completed by clients and then have Omnis extract the data from these forms. Please read the
section “Acroform Fields” in the chapter “Designing PDFDevice” for more details.

Page 4 of 53

https://demos.brainydata.com/software/owrite_jsowrite_additional_files.zip
https://demos.brainydata.com/software/pdfdevice_and_jsclient.zip

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Merging PDF Files (v5.0)

The static function $filemerge() can merge multiple PDF files. This makes it possible to append
existing PDF files to reports, such as Standard appendages to Invoices perhaps.

Encryption and Signing of existing PDF Files (v5.0)

The static functions $fileencrypt() and $filesign() can encrypt and sign existing PDF files, thus
widening the commercial scope of PDFDevice beyond producing PDF files from Omnis reports.

Printing to memory (v4.0)

It was first possible in PDFDevice version 3 to print and retrieve the binary output from an
Omnis method. This way of producing PDF without the use of a file on disk has further been
improved in version 4. You can now print directly to an Omnis binary variable. This means that
all PDF generation can be handled in memory in a much more direct way, substantially
improving logistics as well as performance.

Printing multiple Reports to the same file
Often considered as one of the most important features of PDFDevice is the ability to print
multiple reports to a single PDF file. This greatly simplified the situation where you have to
produce different reports that share some common pages which can now be produced and
inserted by additional report classes. For a description of this feature please read the chapter
Designing PDFDevice.

PDF/A Support (v3.0)

PDFDevice is capable of producing ISO 19005 PDF/A-1b compliant documents suitable for
long-term archiving. As part of this feature, developers or users can specify their own RGB color
profiles if so required. In addition, document information such as the Author and Title are now
embedded as searchable XMP-compliant metadata.

Font Embedding
PDFDevice is capable of creating subsets of true type fonts and embeds their glyphs in the PDF
document. To lessen the impact on the resulting file size, only glyphs required in the document
are embedded. If size is of primary concern, this option can be disabled to further reduce the size
of the file, but the resulting PDF output may not render accurately on other computers that do not
have the correct fonts installed and some unicode characters may not render correctly.

Font substitution (v3.0)

PDFDevice provides an option to substitute non-true-type fonts with true-type fonts that have
similar characteristics for the purpose of font embedding.

Font synthesising (v3.0)

Not all true-type fonts support the standard bold and italic typefaces. For example, the font
"American Typewriter" does not support the italic typeface. However a developer or user may be
able to select the italic typeface for this font and the system will do its best to produce the correct
appearance. Equally, in such cases PDFDevice will simulate bold and italic using appropriate
matrix settings that increase the glyphs' fatness or slant and in that way synthesises the font's

Page 5 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

bold and italic appearance within PDF files.

Image Compression
Images can be compressed using the JPEG compression format. The compression ratio can be
specified to control the amount of compression and the image quality. A high quality setting
produces larger files. A setting of 75% produces good quality images with good compression.

If JPEG compression is disabled, the image’s RGB values are compressed using standard deflate
compression.

Watermarks
PDFDevice allows the placement of text based watermark on the pages. Watermarks can be
placed in front of or behind the pages content and can be rotated at angles of up to 360 degrees
anti-clockwise or clockwise. Watermarks are limited to 255 characters of single line text.

Background Image (v2.0)

The background image device options allow the placement and positioning of a background
image on each page or just the first page of the PDF document.

Document Info
You may specify document information such as the document title, author and subject. This
information will be stored in the PDF's document info section and can be viewed using Acrobat
or other readers that can display the document info.

Viewer Options
The viewer options allow you to control how PDF viewers present the resultant PDF document.
You can control the page layout, page mode and hide user interface controls. Please be aware
that not all PDF viewers support these options.

Bookmarks / Document Outlines
PDFDevice is capable of producing document outline trees from your existing reports as long as
your titles use consistent font, size and style for each level. You can specify the font name, size
and style in the PDF options and PDFDevice will add bookmarks for text that matches the given
criteria, to the document outline tree. You can create trees with numerous levels by specifying
different criteria for each outline level.

Security (v2.0)

The security options allow the encryption of documents. The user can choose between standard
40 bit or more secure 128 bit encryption. Separate Owner and User passwords allow the control
of user permissions such as printing, copying and modifying document content.

Advanced Options Window
The advanced options window is implemented as an Omnis window. The print destination dialog
only displays the destination file name option. The “Advanced…” push button on this dialog can
be linked to Omnis script that is specified with the kDevPdfAdvanced parameter constant. The
example library implements a fully functional options window that you can copy to your own
library. The startup task's $construct method installs this window as described above.

Page 6 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Page Content and Font File Compression
To reduce the overall size of PDF files, all page content streams and embedded font streams are
compressed using “Deflate” compression.

Supported Platforms
Platforms currently supported are macOS and winOS.

Omnis Server Implementation (v4.0)

Please read the section Multi-threaded Server in the chapter “Designing PDFDevice” for
guidance on implementing the thread-save Brainy Data PDF server.

Limitations
External Report Objects
Some external report objects will be converted to images at the current screen resolution and
using the current image compression options. This is due to the objects being of unknown type.
Some external report objects, such as the HTML device objects and the report lists, add known
report manager objects to a print job and are handled more efficiently.

Font Embedding

Page 7 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Designing PDFDevice
This chapter gives a brief description of what is involved to add PDFDevice to your libraries. For
a more detailed description of the example classes and external component please read the
chapters Examples Reference and External Reference.

Integrating PDFDevice
In its basic form, adding PDFDevice to your application is a simple process that can be achieved
in just a few minutes.

Downloading and Installing PDFDevice
Please refer to the Welcome chapter for instructions.

PDF Options Window
As a minimum, you should provide an interface for the
advanced PDF options. You can copy the classes
wPDFOptions and wPDFPickStyle from the examples
library. Feel free to change the windows if you wish.
Once you have designed the interface you must tell
PDFDevice about your options window. You do this by
setting the device parameter kDevPdfAdvanced to the
Omnis notation that will open your window. You must
provide a full notational path to your window, starting at
$root, as PDFDevice is a global device and does not exist
in the context of your library or any other context.

Example:
Do
$cdevice.$setparam(kDevPdfAdvanced,"$root.$libs.PDFDevice.$windows.wPDFOption
s.$openonce('PDFAOptions',kWindowCenter)")

View example code...

You can do this in the $construct method of your startup task or any other appropriate time
during startup. If your application opens several libraries, choose the one that provides the
interface.

Note: The library that provides the interface must remain loaded at all times and the $external
property of the window must be set to kTrue.

External Device Parameters
PDFDevice has a large number of device parameters such as kDevPdfWatermark or
kDevPdfPermissions, etc.

It is important to know that these options are global and that they are stored in the Omnis config
file in the Studio folder of the Omnis tree. Once an option is set, the setting will persist between
Omnis sessions. This configuration makes it easy for each individual client machine to have its
own settings.

Page 8 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

The side effect is that if you run an Omnis library that changes these settings, that Omnis
installation will be changed permanently until the setting is changed by the user or code in your
Omnis library(s). It also means that the output that is produced by a specific installation of
Omnis may not be the same as the output that will be produced by another installation of Omnis,
because the settings may not be the same.

These issues highlight the need to be disciplined about the default settings of your device
parameters, especially for new client installations.

Ideally, after a new installation of your software you want the default device parameters set in a
way which is most useful to your application. PDFDevice has its own defaults that are set the
first time the external is loaded in a new Omnis installation. If you are happy with these defaults
than there is nothing else for you to do. If you require different defaults, you have two choices.

1. You create an Omnis config file with the correct defaults and ship this config file with
your runtimes.

2. You program the default settings and run this code after a new installation. You should
not set the defaults for every Omnis session as this will prevent your users from
changing these settings. You can copy a method from the examples and adopt it for this
purpose.

View example code...

Warning: Every now and then we receive a report that PDFDevice adds the watermark “PDFDevice by Brainy
Data” to the PDF files it produces. The developer typically believes that their component is a demo version
although they have purchased a full license. This is not so.

It is simply the case that at one point the PDFDevice examples had been opened by that Omnis and the examples
turned on this watermark using the device parameter functions. Please see the method “construct_PDFDevice” in
the startup task of the example library.

Page 9 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Beyond the basics
This section describes some of the additional features that you may wish to take advantage of
which will require some additional coding.

Acroform Fields (v5.0)

PDFDevice version 5 implements support for Acroform fields in Omnis reports. To drop an
Acroform field onto your report, select the ‘External Components’ tab in the ‘Component Store’
and drag the ‘PDF Form Field’ object to your report.

The form field’s $fieldtype property determines the type of the form field. PDFDevice supports
all standard Acroform field types, except the radio button (use the choice field instead, see
kDevPdfFFTChoice). Using these fields you can produce PDF files that can collect data from
your clients by using the Adobe Reader to fill in the fields and

1. submit them to your server. See the PDFDevicePoDoFo examples for more details. The
examples include a sample server script that will mail the data that was entered to the
email address provided in the form.

2. return the filled in PDF form. You can then use the PDFDevice static function
$filereaddata() to extract the data from the form. Again, see the PDFDevicePoDoFo
examples for more details.

The PDFDevicePoDoFo examples provide an Omnis sample report that demonstrates all of the
supported field types.

Page 10 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Combining Reports
PDFDevice allows you to print several reports to a single PDF file. In order to do this, you must
open the device prior to printing your reports, and close the device when the final report has
printed.

Example:
Do $cdevice.$assign(kDevPdf) ;; set the current destination
Do $cdevice.$open() ;; open the device

;; print your reports

Do $cdevice.$close() ;; close the device

Printing to memory (v4.0)

It is possible to direct output to memory by calling the method $setmemoryoutput, specifying the
name of the binary variable that is to receive the PDF data.

Examples:
Do PDF Device.$setmemoryoutput(nam(variable))

View example code...

The variable must remain in scope while the report is printed or Omnis may crash. Therefore
using an instance variable of the instance that is printing the report, or a task variable of the task
that is active while the report is printed is recommended. However, using a local variable will
work if the method that owns the variable also completes the printing.

Page 11 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Once the report is printed, the data in the binary variable can be saved to a file on disk, a
database, an FTP server, or whatever is required.

PDF Report Object (changed in v4.0)

It may sometimes be desirable to change the device parameters of an output device instance
associated with the running print job. For example, you may wish to turn off watermarks after
the first page has been printed.

Using the PDFDevice report object facilitates this feature. To assign parameters directly to the
device instance belonging to the report instance follow these instructions.

Declare an instance variable of type Row. Place the report object in the page header section prior
to any other content and set its $dataname to the row variable. To insure the PDF object is
printed prior to all other content you can use a positioning section in the page header section as
shown below. When a new page is
generated by Omnis, the PDF object
is printed which simply sends the
current device data in your row
variable to the device.

Now you can change any of the device parameters as and when is needed. For example, in the
$print method of the header section you may place the following code to turn of the watermark
after page 1:
If #P=2

Calculate ivPDFParams.[kDevPdfWatermark] as kFalse
End if
Do default

If you simply want to use the report object to set device parameters without effecting the global
parameters, you can set all parameters during the report’s $construct method, in which case you
may place the report object in the Report header section, so it is only printed once during the
print job (i.e. send the device parameters just the once to the device).

Version Numbers
It is advisable that you check the correctness of the version numbers of any third-party
components to ensure you always distribute the correct versions. Please refer to technical note
TN0022 to find out how to programmatically check the version numbers of our software.

View example code...

Page 12 of 53

http://www.brainydata.com/supportpublic/tn/tn0022.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Multi-threaded Server (version 4.0)

PDF Device version 4 implements some major improvements in the way you can use the device
with the Omnis multi-threaded server. The following sections describe the key actions that you
must perform when using the new Brainy Data PDF device server (hereafter referred to as
BDPDF server) in conjunction with the Omnis server. The four key actions are summorized as
follows:

• Preparing and starting the PDF server. See sub-section Library Startup

• Deciding and setting the output destination. See sub-section Setting the Destination

• Perform the printing. See sub-section Printing

• Return PDF to client. See sub-section Display PDF on Client

Note: This documentation is best read alongside studying the accompanying example library
PDFDeviceAndJSClient.lbs.

Library Startup
Wherever you normally execute the Omnis Start server and Stop server commands, you should
now perform the following additional actions.

Preparing device settings
It is advisable to prepare the main device settings for use by the server, prior to starting the
device server. Starting the device server will create copies of these settings for each Omnis
server thread.

Recommendation: For performance reasons always turn off the option kDevPdfImgConvBest as
this option substantially affects performance when reports contain images.

Starting the device server
The device server can be started by executing the function PDF Device.$startserver(), which is
available from the Catalog function tab. When executed, the external will create a device
instance for each Omnis server thread and copy the device settings from the application’s main
device instance. From this moment onwards, whenever device notation such as $setparam(),
$getparam(), $open(), $close() is executed, they will address the device instance associated with
the current executing thread. Consequently, any actions are isolated from the other threads.

Consideration: Multiple remote form/task instances will share an execution thread, not at the
same time, but sequentially, which means that changes to device settings can affect other form or
task instances. See the section ‘Managing Device Settings’ for a detailed discussion on this
subject.

Example:
; start the Omnis server
Start server
; prepare device settings for our threaded devices
Do $cdevice.$assign(kDevPdf)
Do $cdevice.$setparam(kDevPdfImgConvBest,kFalse,kDevJPEGQuality,90)
; start the device server
Do PDF Device.$startserver()

Page 13 of 53

https://www.brainydata.com/demos/software/pdfdevice_and_jsclient.zip

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Stopping the device server
Where you typically stop the Omnis Server, that is where you should also stop the device server,
albeit after you have already stopped the Omnis server.

Example:
; stop the Omnis server first
Stop server
; now it should be save to stop the device server

Do PDF Device.$stopserver()

Setting the Destination
When receiving a print request from a client, one of the first actions will be setting the
destination file or variable. Wether you use a file or variable output depends very much on your
client implementation and needs. If you want to use the client commands “showpdf” or
“assignpdf” you must use a PDF file. If you intend to embed the PDF in a HTML control or are
responding to an ultra-thin request, you can use a variable and directly return the data as the
result of the client request. Using a variable has various logistic and performance benefits.

Using temporary files
For this purpose, version 4 implements the function PDF Device.$settempfilename. Using this
method, you can specify a time limit in minutes in parameter one. If you specify zero, the file is
permanent, i.e. it is not removed after a period of time. The method $settempfilename will return
the temp destination folder and unique file name in parameters two and three, unless these
parameters are not empty to begin with. Please see the discussion in the reference chapter.

Example of use:
; set the destination
Do PDF Device.$settempfilename(1,lvPath,lvName)
; print report(s)
...
; return PDF to client
...

Using permanent files
As indicated above, the function $settempfilename() can also be used to send output to a PDF
file that will not be deleted by the device server (i.e. by specifying zero for parameter one). You
can of course continue to use $setparam(kDevPdfFileName,...) to send output to a permanent file
but you will have to calculate the destination path and unique file name yourself.

Using a variable
Output can directly be send to an Omnis binary variable. Sending output to a local, instance or
task variable assumes that your implementation wishes to directly return PDF mime content or
base64 data to the client or to store the pure PDF data in a database. If the former, it also assumes
that the action to return the PDF data was sent either by:

Page 14 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

1. An ultra-thin request using a special URL requesting the PDF mime data of the output
to be returned. In this case, parameter two must specify a download file name which
causes the PDF data to be prefixed by a mime header containing the specified file name
and other details. Example 3 in the example library PDFDeviceAndJSClient.lbs
demonstrates this scenario.

2. The returned base64 data is to embedded in an HTML object using the embed tag with a
‘data’ URL. Example 1 in the aforementioned library demonstrates how this can be
achieved.

A simple example of both cases is documented in the section Examples at the end of this chapter.

WARNING! The variable that you specify must be in scope when the report finishes printing (or
the device is closed using $close() when printing multiple reports). In other words, if you are
using a local variable, the print job must be completed prior to the method going out of scope.
The PDF device server cannot tell if a variable that was specified still exists by the time it comes
to write the PDF data. If the variable is allowed to go out of scope prior to the print job
completing, Omnis may crash.

Example of use:
; set the destination
Do PDF Device.$setmemoryoutput(nam(lvPdfOutput),”report.pdf”)
; print report(s)
...

; return PDF to client

Printing
Once the destination has been set, the server thread can either just print a single report or
multiple reports to the same destination.

Single Report
Printing a single report to PDF is as simple as setting the report name and executing the Omnis
Print command. By the time the Print command returns control to you, the PDF data will have
been written to your file or variable.

Multiple reports
To print multiple reports, you use the device notation $open() to open the PDF device output
stream, prior to printing your reports. When using PDFDevice version 4 it is now save to do this
in the Omnis multi-threaded server. After you have printed all the reports to be included, you
must call the device notation $close() to complete the PDF output.
Example of use:
; open the device for multi-report output
Do $cdevice.$open()
; print the reports
...
; close the device
; ;; this action writes the PDF content to your file or variable
Do $cdevice.$close()

Page 15 of 53

https://www.brainydata.com/demos/software/pdfdevice_and_jsclient.zip
https://www.brainydata.com/demos/software/pdfdevice_and_jsclient.zip

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Display PDF on Client
The final action is to return the PDF file or mime data to the client.

Using Omnis client commands 'showpdf' or 'assignpdf'
If you have generated an output file, you may use the client commands 'showpdf' or 'assignpdf'.
You must concatenate the path and name as returned by $settempfilename() when using these
commands.

Example:
$cinst.$clientcommand('showpdf',row(con(lvPath,lvName),1,lvName))

or
$cinst.$clientcommand('assignpdf', row('ctrlEmbedPDF', 'toolbar=1',
con(lvPath,lvName), 1, lvName))

Returning PDF mime data
If the remote task was called via an ultra-thin request and you sent the output to a memory
variable, you can simply return the PDF mime data in your variable using the Quit method
command. See section 'Using a memory variable' above.

Example:
If binlength(lvPdfOutput)

; we can just return the data as is because its prefixed with a mime
; header by the external device (see $setmemoryoutput)
Quit method lvPdfOutput

End If

Page 16 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Examples
This section lists basic examples that demonstrate: choosing a destination, printing, and returning
PDF to the client in various scenarios.

Using a temp temp file
set the temp file destination with a 3 minute life-span
Calculate lvPath as ""
Calculate lvName as "myprefix"
Do PDF Device.$settempfilename(3,lvPath,lvName)
on return from $settempfilename
- lvPath will point to the Omnis temp folder
- lvName will be set to ‘myprefixYYMMDDhhmmn.pdf”

now we print the report
Do $cdevice.$assign(kDevPdf)
Set report name eX_Report
Print report

show the report in our html control using ‘assignpdf’
- lvName specifies the document name for when the client saves the file
Calculate lvRow as

row('ctrlEmbedPDF','toolbar=1',con(lvPath,lvName),1,lvName)
Do $cinst.$clientcommand('assignpdf',lvRow)

Using a permanent file
set the temp file destination with a 3 minute life-span
Calculate lvPath as "c:\temp"
Calculate lvName as "myprefix"
Do PDF Device.$settempfilename(3,lvPath,lvName)
on return from $settempfilename
- lvPath will point to “c:\temp”
- lvName will be set to ‘myprefixYYMMDDhhmmn.pdf”

now we print the report
Do $cdevice.$assign(kDevPdf)
Set report name eX_Report
Print report

show the report in our html control using ‘assignpdf’
- lvName specifies the document name for when the client saves the file
Calculate lvRow as row(con(lvPath,lvName),1,lvName)
Do $cinst.$clientcommand('assignpdf',lvRow)

Using a binary variable for embedding
Requires two methods. One for producing and returning PDF on server, the other to receive the
PDF data on return which embeds it.
Server: RemoteForm.$printForEmbed ====================================
print for embedding in our ctrlEmbedPDF control 2
1. prepare our output device  
Do $cdevice.$assign(kDevPdf)
1.a ## apply instance’s device settings to external device

Page 17 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Do $cdevice.$setparam(kDevPdfAll,ivDeviceParams)
1.b ## tell PDFDevice to send output to our local variable
Do PDF Device.$setmemoryoutput(nam(lvPdfData))

2. print our report
Do method $cinst.$printDocument

3. return result for display on client
If binlength(lvPdfData)

we can just return the data as is because its prefixed with a
mime header (which we requested when calling $setmemoryoutput)

Quit method lvPdfData
End If

Client: RemoteForm.$printForEmbed_return ==================================
assign PDF data returned by the server to our html control using the

embed tag
Calculate $cinst.$objs.ctrlEmbedPDF.$html as con('<embed

style="border: 1px solid rgb(128,128,128)" width="100%" height="100%"
src="data:application/pdf;base64,',pPdfData,'">')

Using a binary variable for ultra-thin requests
Client: HTML ==
<!DOCTYPE html>
<html><head><style>body {background-color:
rgb(255,255,221);}</style></head><body leftmargin="50">
<h1>PDFDevice ultra-thin client Example</h1>
<p>The submit button below executes an ultra thin call and opens the returned
content in a new browser window:</p>
<form action="http://127.0.0.1:61098/ultra" target="_blank">
 <input type="hidden" id="OmnisServer" name="OmnisServer"
value="'127.0.0.1:61098'">
 <input type="hidden" id="OmnisLibrary" name="OmnisLibrary"
value="PDFDeviceAndJSClient">
 <input type="hidden" id="OmnisClass" name="OmnisClass"
value="e3_RemoteTask">
<h3>File Options</h3>
 <label for="FileName">PDF File Name:</label>
 <input type="text" id="FileName" name="FileName"
value="UltraThinLetter.pdf">
 <input type="checkbox" id="PrintBlurp" name="PrintBlurp" value="1">
 <label for="PrintBlurp">Print Blurp</label>

<h3>Report Data</h3>
<blockquote>
 <label for="Title">Title:</label>

 <input type="text" id="Title" name="Title" value="Mr.">

 <label for="FirstName">First name:</label>

 <input type="text" id="FirstName" name="FirstName" value="John">

 <label for="LastName">Last name:</label>

 <input type="text" id="LastName" name="LastName" value="Doe">

 <input type="submit" value="Submit">
</blockquote>
</form>
</body></html>

Page 18 of 53

http://127.0.0.1:61098/ultra

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

; Sever: RemoteTask.$construct ==
ultra-thin call to print report and return PDF
1. prepare our output device
Do $cdevice.$assign(kDevPdf)
for ultra-thin connects restore device settings to those from main

application thread so we do not inherit
some other client's settings who has left them lying about in this

server-thread
Do PDF Device.$initparams()
1.b ## tell PDFDevice to send output to our local variable
IMPORTANT: we can only use a local var if this function completes the

print-job
Do PDF Device.$setmemoryoutput(nam(lvPdfData),pParams.FileName)

2. print our report
Set report name eX_Report
Print report * (pParams) ## pass form data to report instance

3. return result for display on client
Quit method lvPdfData

Printing multiple reports
set the destination with a 1 minute life-time for the file
Calculate lvPath as ""
Calculate lvName as "myprefix"
Do PDF Device.$settempfilename(1,lvPath,lvName)
on return
- lvPath will point to the Omnis temp folder
- lvName will be set to ‘myprefixYYMMDDhhmmn.pdf”

print the reports
Do $cdevice.$assign(kDevPdf)
Do $cdevice.$open()
Set report name eX_Report
Print report
Set report name eX_ReportPDFBlurb
Print report
Set report name eX_ReportPDFKeyActions
Print report
Do $cdevice.$close()

show the report in our html control using ‘assignpdf’
- lvName specifies the document name for when the user saves the file
Calculate lvRow as row('ctrlEmbedPDF','toolbar=1',con(lvPath,lvName))
Do $cinst.$clientcommand('assignpdf',lvRow,1,lvName)

Page 19 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Managing Device Settings
As was mentioned in the section ‘Library Startup’, the device server will create a single device
instance for each server thread. This guarantees that any device settings that are changed, are
only changed for the thread in which the change occurs. However, each thread is not uniquely
used by a single remote form or task instance which means that if task A makes a change on
thread 3, when another task’s method (i.e. task B) executes on thread 3 later on, this method will
inherit any changes task A applied previously. There are four possible scenarios that must be
considered.

1. The changed settings don’t matter
It may be that the device settings that are changed by a remote task are limited to setting the
destination, which is carried out by every method that intends to print. In this case there is
nothing else to consider.

2. The changed settings do matter
In this case, prior to printing and applying new settings that are specific to this job, the function
PDF Device.$initparams() can be called to first restore the device settings to those of the main
application thread.

3. Device settings are to be maintained for each user between requests
You may allow client’s to modify the device parameters as part of their session. This means that
device settings for the user must be maintained between server requests. In this case, the
following sub-scenarios must be considered:

i. Client connects for the first time. Use PDF Device.$initparams(ivParams) to initialise
the device to the application default and at the same time receive these settings in your
binary instance variable that maintains the client settings between requests.

ii. Client edits settings or prints. Use $cdevice.$setparam(kDevPdfAll,ivParams) to load
the client’s settings into the current execution thread. If the client changes settings via
your JS interface, use your binary instance variable to directly manipulate the device
settings on the client. The example library PDFDeviceAndJSClient.lbs includes the
remote form rfPDFOptions and various support classes that implement such an
interface. This interface is used by Examples 1 and 2 in the example library.

4. Device settings are to be maintained for each user between sessions
A form instance may have a log-in so that the user is known and clients have their own device
settings that the server maintains between sessions. In this case, you must consider sub-scenarios
3.i and 3.ii above and in addition, within each of these sub-scenarios, store the device settings in
ivParams with the client’s other data for maintaining the settings between sessions.

Page 20 of 53

https://www.brainydata.com/demos/software/pdfdevice_and_jsclient.zip

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Further Reading
There are a number of technical notes available on our website that you should read before you
integrate PDF Device into your application(s). These are

TN0014 ‘External Device Parameters’ explains issues surrounding Omnis device parameters.

TN0015 ‘Performance’ explains the impact various device options can have on performance.

TN0017 ‘Font Embedding’ gives a detailed description about the importance of font
embedding and potential issues. It also explains how to monitor font related errors
and warnings to fend off potential problems with documents.

TN0021 ‘Omnis Studio V6 Compatibility’ is relevant to developers who have implemented
PDFDevice prior to version 3 and need to upgrade to Omnis Studio version 6.

TN0022 ‘External Component Version Numbers’ explains how to programmatically check
the version numbers of our software.

Page 21 of 53

http://www.brainydata.com/supportpublic/technotes.htm
http://www.brainydata.com/supportpublic/tn/tn0014.pdf
http://www.brainydata.com/supportpublic/tn/tn0015.pdf
http://www.brainydata.com/supportpublic/tn/tn0017.pdf
http://www.brainydata.com/supportpublic/tn/tn0021.pdf
http://www.brainydata.com/supportpublic/tn/tn0022.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

External Reference
This chapter documents the constants for getting and setting device parameters, it's methods and
properties. Additional descriptions for the generic device methods and properties can be found in
the Omnis help.

Contents
Device Parameters - for setting and queering device properties using the methods
$setparam and $getparam. Device parameters are organised into the following groups;
Basic Parameters, General Parameters, Watermark Options, Document Info,
Viewer Options, Bookmarks, Compatibility Options, Background Image,
Security Options.

Constants - for specifying values for device parameters and static methods.

Device Properties - lists the standard Omnis device instance properties and describes how
they apply to PDFDevice.

Device Methods - lists the standard Omnis device instance methods and describes how
they apply to PDFDevice

Static Methods - non-standard methods provided by PDFDevice.

Report Objects - lists the Acroform and PDF parameters report objects and their
properties.

Form Field Constants - lists the constants for use with the Acroform field properties.

Page 22 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Device Parameters
You set and get device properties using the methods $setparam and $getparam together with
the constants listed below.

Example:
Calculate $cdevice as kDevPdf
Do $cdevice.$setparam(kDevPdfEmbedFonts,kTrue,kDevPdfEmbedLicFonts,kFalse)

Calculate fname as $cdevice.$getparam(kDevPdfFileName)

Note: Device parameters are stored in the Omnis configuration file (omnis.cfg). When Omnis
starts all device parameters are automatically loaded.

Basic Parameters
Device parameters that can not be described within a well defined group.

Name Value Description

kDevPdf varies The unique registration ID of the PDF device (the
value of this constant is assigned by Omnis during
startup). You can use this constant to refer to or set
the current device.

Example:
Calculate $cdevice as kDevPdf

kDevPdfAdvanced 3 The Omnis command to be executed when the
"Advanced..." button is clicked. Please read the
Chapter Designing PDFDevice for a full description.

kDevPdfAll 255 This parameter is used to fetch and set all device
parameters in a row variable. The column names are
the constant names without the prefix kDevPdf. You
may not alter the order of the columns as PDFDevice
uses the column numbers to identify the parameters.

kDevPdfFileName 2 Sets the destination file name or notation to a method
when printing to memory. Refer to the chapter
Designing PDFDevice for further details.

kDevPdfTempFileTime (v4.0) 56 Time in minutes after which to delete the output file
that was set by kDevPdfFileName. This parameter
must be set after setting kDevPdfFileName as
kDevPdfFileName resets the time to zero.

Zero means do not delete the file.

Page 23 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

General Parameters
Device parameters that manage the general options such as Image and Font handling.

Name Value Description

kDevPdfConvJPEG 4 If set to kTrue, Images will be converted to JPEG
using the current JPEG quality setting. Converting
images to JPEG may reduce the quality. If this
option is not selected, 24 bit RGB values are
compressed using standard deflate compression with
no loss of quality, but possible loss of compression.

kDevPdfConvLinks 8 If set to kTrue, this option converts any occurrences
of the text “http://” and the text “www.” to Link
annotations. Links to files on disk can also be
established by using standard URI paths beginning
with “file://”.

kDevPdfEmbedFonts 6 If set to kTrue, this options will subset and embed
true type fonts for better cross platform results. See
also kDevPdfSubstituteFonts.

kDevPdfEmbedLicFonts 7 If set to kTrue, this option embeds copyrighted fonts.
Please make sure that you have a license that permits
the embedding of these fonts. If you are unsure, do
not select this option.

kDevPdfImgConvBest (v1.3) 34 If set to kTrue and kDevPdfConvJPEG is true,
PDFDevice will choose between the specified JPEG
compression and the default RGB deflate
compression for each image. Some images will yield
better compression ratios when using RGB deflate.
Enabling this option may reduce performance
slightly, as PDF device has to apply both
compressions to each image.

kDevPdfImgStripDup (v1.3) 35 If set to kTrue, duplicate images will be stripped
from the document. This can reduce the final file
size substantially if you are repeatedly using the
same image throughout a document.

kDevPdfJPEGQuality 5 The quality of the images when kDevPdfConvJPEG
is true. The valid range is 0 to 100, where 100 means
high quality with low compression, and 0 means low
quality with high compression. A value of 75
generally produces a good rate of compression
without compromising too much on quality.

Page 24 of 53

file://�.

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

kDevPdfPictMetaDPI 31 This option controls the quality of Macintosh PICT
and Windows Meta picture conversion. Valid range
is 72 to 600. Default is 150. Increasing the resolution
to improve quality will increase the size of the PDF
file.

kDevPdfSubstituteFonts (v3.0) 51 Substitute fonts that cannot be embedded with true-
type fonts that can be embedded. (see technical note
TN0017)

Watermark Options
PDFDevice allows the placement of text based watermark on the pages. Watermarks can be
placed in front of or behind, the pages content and can be rotated at angles of up to 360 degrees
anti-clockwise or clockwise. Watermarks are limited to 255 characters of single line text. The
following constants are used to set watermark specific parameters.

Name Value Description

kDevPdfWatermark 9 If set to kTrue, watermarks are placed on every page.

kDevPdfWMAngle 14 The rotation of the text in degrees anti-clockwise.
Valid range is from 0 (no rotation) to 359.

kDevPdfWMFont 11 The font name for the watermark. This must be a
font name that exists in the operating system.

kDevPdfWMFontSize 12 The font size in points. Valid range is 4 to 128.

kDevPdfWMHorzPos 16 The horizontal starting position from the left of the
paper edge, measured in centimeters or inches. The
library preference $usecms determines the unit of
measure.

kDevPdfWMInFront 15 If set to kTrue, the watermark will appear in front of
the page content.

kDevPdfWMText 10 The text to be displayed. This parameter is limited to
255 characters of single line text.

kDevPdfWMTextColor 13 The RGB value of the text color. You can use the
Omnis rgb() function to specify the value.

kDevPdfWMVertPos 17 The vertical starting position from the top of the
paper edge, measured in centimeters or inches. The
library preference $usecms determines the unit of
measure.

Page 25 of 53

http://www.brainydata.com/supportpublic/tn/tn0017.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Document Info
Device parameters that manage the document info. Document info is stored in the PDF's
document info dictionary and can be viewed using Acrobat or other readers that can display
document info.

Name Value Description

kDevPdfInfoAuthor 19 The name of the person who created the document.

kDevPdfInfoKeywords 21 Keywords associated with the document.

kDevPdfInfoSubject 20 The subject of the document.

kDevPdfInfoTitle 18 The document’s title.

Viewer Options
Device parameters that manage the PDF viewer options. Please note that not all PDF viewer
applications implement these options.

Name Value Description

kDevPdfCenterWindow 28 If set to kTrue, position the document's window in
the center of the screen.

kDevPdfDisplayTitle 29 If set to kTrue, position the document's window in
the center of the screen.

kDevPdfFitWindow 27 If set to kTrue, the PDF viewer application will
resize the document window to fit the size of the first
page.

kDevPdfHideMenubar 25 If set to kTrue, hide the viewer application's menu
bar when the document is active.

kDevPdfHideToolbar 24 If set to kTrue, hide the viewer application's tool bar
when the document is active.

kDevPdfHideUI 26 If set to kTrue, hide user interface elements in the
document window, such as scroll bars and
navigation controls.

Page 26 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

kDevPdfPageLayout 22 This parameter specifies the page layout to be used
when the document is opened. The parameter takes a
string as its value. Possible values are.

SinglePage Display one page at a time.

OneColumn Display the pages in one
column.

TwoColumnLeft Display the pages in two
columns, with odd numbered
pages on the left.

TwoColumnRight Display the pages in two
columns, with odd numbered
pages on the right.

kDevPdfPageMode 23 This parameter specifies how the document should
be displayed when opened. The parameter takes a
string as its value. Possible values are.

UseNone Neither document outline nor
thumbnail images visible.

UseOutlines Document outline visible.

UseThumbs Thumbnail images visible.

FullScreen Full-screen mode, with no
menu bar, window controls, or
any other window visible

Bookmarks
PDFDevice is capable of producing document bookmarks (outline trees) from your existing
reports as long as your titles use consistent font, size and style for each level. You can specify
the font name, size and style in the PDF options and PDFDevice will add bookmarks for text
that matches the given criteria, to the document outline tree. You can create trees with
numerous levels by specifying different criteria for each outline level.

The outline font matching criteria is stored in an Omnis list with three columns named
FontName, FontSize and FontStyle. Each row in the list creates a new outline level in the final
document. The first list row is the root level.

Name Value Description

kDevPdfOutlines 30 Sets or gets the outline font matching criteria.

Compatibility Options
The following are compatibility options. At some stage functional changes were made that may
effect your output. To counteract any unwanted side effects you can change the compatibility
settings to turn off the new behaviour.

Page 27 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Name Value Description

kDevPDF72DPILines (v1.1) 31 In version 1.0, a lines thickness was calculated based
on the platforms screen resolution. That meant that
lines were drawn slightly thicker on windows
platforms. In version 1.1, turning this option on will
ensure that a lines thickness is based on a 72DPI
resolution on all platforms.

kDevPDFIgnoreFontStyle 36 OBSOLETE in version 3 (see technical note
TN0017).
Prior to version 3, PDFDevice will not embed fonts
if the font file does not contain glyph data for the
requested style. Turning on this option forces PDF
device to embed the available glyph data even if the
styles are not supported by the font.

kDevPDFPgCntPerReport (v1.2) 32 In version 1.1 and earlier, page count objects would
display a single page range, even when printing
multiple reports to the same PDF file. It was
recognised that this is a difference in behaviour from
when printing to other devices. Nevertheless, it is
considered usefull and as such an option was added
to enable or disable this feature. When individual
page ranges are required for each print job, set this
device option to kTrue.

kDevPdfaEnabled (v3.0) 52 Enables PDF/A-b1 support based on the ISO 19005
standard. Enabling this option will generate PDF/A
compliant documents. See technical note TN0023 for
full details.

kDevPdfaOutputInfo (v3.0) 53 Information string for custom output intent color
profile provided by kDevPdfaOutputProfile. See
technical note TN0023 for full details.

kDevPdfaOutputProfile (v3.0) 54 Output intent color profile data (*.icc). See technical
note TN0023 for full details.

kDevPdfPrintScale (v3.1) 55 Sets the scaling factor for the document (valid range
25% to 400%)
Note: In versions prior to version 3.1.0. PDFDevice would
retrieve intended scaling from the Omnis $scale property.

Background Image (v2.0)

The following device parameters control the background image properties. Background images
are placed relative to the top left of the page. There are various parameters that control the
positioning and size of the image.

Page 28 of 53

http://www.brainydata.com/supportpublic/tn/tn0017.pdf
http://www.brainydata.com/supportpublic/tn/tn0023.pdf
http://www.brainydata.com/supportpublic/tn/tn0023.pdf
http://www.brainydata.com/supportpublic/tn/tn0023.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Name Value Description

kDevPdfBkgImgData 38 Image data or notation that returns the image data.

kDevPdfBkgImgDPI 44 Specifies the DPI at which image is drawn. Used
when kDevPdfBkgImgScale is turned off.

kDevPdfBkgImgFirstPageOnly 45 If true, background image is only added to first page.

kDevPdfBkgImgHPos 42 Horizontal offset of image from paper edge. Used
when kDevPdfBkgImgScale is turned off.

kDevPdfBkgImgKeepAspect 41 If true, aspect ratio is maintained when image is
scaled.

kDevPdfBkgImgOn 37 If true and kDevPdfBkgImgData is not empty,
PDFDevice will add a background image to every
page.

kDevPdfBkgImgScale 39 If true, background image is scaled to fit the entire
page minus the amount specified by
kDevPdfBkgImgScaleBorder.

kDevPdfBkgImgScaleBorder 40 Specifies the gap between image and paper edge
when kDevPdfBkgImgScale is enabled.

kDevPdfBkgImgVPos 43 Vertical offset of image from paper edge. Used when
kDevPdfBkgImgScale is turned off.

Security Options (v2.0)

These device parameters specify the security options and user permissions for the final PDF
document. PDFDevice will encrypt documents if either one of the Owner or User passwords is
supplied. If both passwords are empty, no encryption takes place.

Note: If a user-password is specified but the owner-password is empty, PDF viewers may only
provide user access permissions to the resulting PDF document. They may not provide a way
for entering an empty password for full Owner permissions.

Note: If a owner-password is specified but the user-password is empty, a user will not be
prompted to enter a password when opening the document and operations will be limited
according to the permission flags. Some viewers allow the subsequent entering of the owner
password for full access permissions.

Name Value Description

kDevPdfOwnerPassword 46 The owner password grants full access to the
resulting PDF documents.

Page 29 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

kDevPdfPermissions 49 Specifies user permissions. PDFDevice provides a
set of constants for setting and querying the various
options. You can use the Omnis functions bitor(),
bitxor() and bitand() to set, clear and query the
individual permissions.

kDevPdfUse128BitEncryption 48 By default, data is encrypted using 40 bit encryption
keys. If this option is set, 128 bit encryption keys are
used to achieve a higher level of encryption.

kDevPdfUserPassword 47 The user password grants restricted access to the
resulting PDF documents as specified by
kDevPdfPermissions.

kDevPdfPermissions Examples:
;; get the permission flags (lPerms must be a long integer)
Do $cdevice.$assign(kDevPdf)
Do $cdevice.$getparam(kDevPdfPermissions) Returns lPerms

;; add print and copy permissions
Calculate lPerms as bitor(lPermissions,kDevPdfPermPrint+kDevPdfPermCopy)

;; remove the copy permission
Calculate lPerms as bitxor(lPermissions,kDevPdfPermCopy)

;; test if either or both the print or copy permissions are enabled
If bitand(lPermissions,kDevPdfPermPrint+kDevPdfPermCopy)

;; set the permissions
Do $cdevice.$setparam(kDevPdfPermissions,lPerms)

Page 30 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Constants
PDFDevice provides a set of additional constants for its device parameters and static methods.

kDevPdfEncrypt... (v5.0)

Group of constants for specifying encryption when calling the function $fileencrypt().

Name Value Description

kDevPdfEncryptRC4V1 1 use 40 bit RC4 encryption, outputs PDF v1.4

kDevPdfEncryptRC4V2 2 use 40-128 bit RC4 encryption, outputs PDF v1.4

kDevPdfEncryptAESV2 4 use 128 bit AES encryption, outputs PDF v1.5

kDevPdfEncryptAESV3 8 use 256 bit AES encryption, outputs PDF v1.7

kDevPdfPerm... (v2.0)

Group of constants for setting user permissions. See kDevPdfPermissions.

Name Value Description

kDevPdfPermAssemble 1024
0x0400

the user can assemble documents (insert, rotate, or
delete pages and create bookmarks or thumbnail
images)

kDevPdfPermCopy 16
0x0010

the user can copy or otherwise extract text and
graphics from the document by operations other than
that controlled by kDevPdfPermExtract.

kDevPdfPermExtract 512
0x0200

the user can extract text and graphics (in support of
accessibility to disabled users or for other purposes)

kDevPdfPermFillFields 256
0x0100

the user can fill in existing interactive form fields
(including signature fields)

kDevPdfPermFillFieldsComme
nts

32
0x0020

the user can add or modify text annotations, fill in
interactive form fields, and, if kDevPdfPermModify
is checked, create or modify interactive form fields
(including signature fields).

kDevPdfPermModify 8
0x0008

the user can modify the contents of the document by
operations other than those controlled by
kDevPdfPermFillFieldsComments,
kDevPdfPermFillFields and kDevPdfPermAssemble.

kDevPdfPermPrint 4
0x0004

the user can print the document.

Page 31 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

kDevPdfPermPrintFull 2048
0x0800

the user can print the document to a representation
from which a faithful digital copy of the PDF content
could be generated. When this option is off, printing
is limited to a low-level representation of the
appearance, possibly degraded quality. Requires
kDevPdfPermPrint to be enabled.

Page 32 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Device Properties
Below are the device properties and their initial values. Properties in red are read-only and
cannot be altered. For a more detailed description of these properties, please consult the Omnis
documentation.

Name Default Description

$cangeneratepages kTrue PDF device generates paged reports

$cankeepopen kFalse PDF device should not be left open for prolonged
periods. Opening PDF device using $open will
create and open the destination file.

$iconid empty The alternative icon to be displayed in the
destination dialog.

$ident varies The unique ID of the PDF device. The ID is
assigned during startup of Omnis.

$isopen kFalse Returns true if the device is currently open.

$istextbased kFalse PDF Device is a graphic based output device and
can handle all Omnis report objects.

$name “PDF” The fixed name of the device.

$title “PDF” The name to be displayed in the destination
dialog.

$visible kTrue If set to kTrue, the device will appear in the
destination dialog.

Page 33 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Device Methods
Below are listed the standard device methods. For a more detailed description of these methods,
please consult the Omnis documentation.

$canclose()
Syntax: $devices.PDF.$canclose(bQuit)

Version: 1.0

Call this method to determine if the device can be closed. You should never have a need to call
this method.

Parameter Description

bQuit Tells the device if the close is due to a quit operation.

returns kTrue if the device can be closed.

$close()
Syntax: $devices.PDF.$close()

Version: 1.0

Closes the device. You must have called $open prior to calling $close().

Parameter Description

returns kTrue if the device was open and has been closed.

$flush()
Syntax: $devices.PDF.$flush()

Version:

PDFDevice does not implement this method. Writing of the final file output is handled during
the closing of this device. During printing all output is buffered to an intermediate file. This
method is generally only used when writing data directly to the device using $senddata().
PDFDevice does not support $senddata().

Parameter Description

returns returns kFalse

$getparam()
Syntax: $devices.PDF.$getparam(nParamNumber)

Version: 1.0

Use this method to get the values of the device parameters.

Page 34 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

nParamNumber Specifies the parameter number. Use one of the kDevPdf...
constants.

returns the value of the parameter.

$open()
Syntax: $devices.PDF.$open()

Version: 1.0

Opens the device for output. PDFDevice will create and open the destination file. If the
destination file parameter is empty, the user will be prompted to specify a valid file name. You
only open the device manually if you intend to print more than one report to the same PDF file.
When you have finished printing, you must call $close(), so the destination file is completed
and closed.

Parameter Description

returns kTrue if the device was opened.

$senddata()
Syntax: $devices.PDF.$senddata()

Version:

PDFDevice does not support this method.

Parameter Description

returns kFalse

$sendtext()
Syntax: $devices.PDF.$sendtext()

Version:

PDFDevice does not support this method.

Parameter Description

returns kFalse

$setparam()
Syntax: $devices.PDF.$setparam(nParamNumber,value[nParamNumber,value,...])

Version: 1.0

Use this method to set the values of device parameters. You can set several parameters with a
single call to $setparam.

Note: Device parameters are stored in the Omnis configuration file (omnis.cfg). When Omnis
starts all device parameters are automatically loaded.

Page 35 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Parameter Description

nParamNumber Specifies the parameter number. Use one of the kDevPdf...
constants.

value The new value for the parameter.

returns kTrue if successful.

Page 36 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Static Methods
Non-standard methods provided by PDFDevice. These methods are available from the Function
tab of the Omnis Catalogue in the PDF Device group.

$fileencrypt()
Syntax: PDF Device.$fileencrypt(cInputFile, cOutputFile, cUserPassword, cOwnerPassword,
iEncryption, iPermissions) Returns err

Version: 5.0.0.0

Encrypt the specified PDF file.

Parameter Description

cInputFile The PDF file to be encrypted.

cOutputFile The output PDF file name.

cUserPassword The user password that grants access to the files according to
the permissions that are set via iPermissions. The user
password may be empty in which case anyone can open the file
with the limitations as set by iPermissions.

cOwnerPassword The owner password that gives full access to the PDF file.

iEncryption The encryption algorithm that will be used to encrypt the file.
This can be one of the kDevPdfEncrypt... constants.

iPermissions The permission for the user password. This can be any
combination of the kDevPdfPerm... constants.

Note: If the PDF file is unlocked with the owner password, full
permissions are granted.

returns Returns 1 if successful, 0 or a negative error code on failure.
the function failed you can call $filegetlasterror() to retrieve
additional error information.

$filemerge()
Syntax: PDF Device.$filemerge(cInputFile1, cInputFile2, cOutputFile) Returns err

Version: 5.0.0.0

Merges two PDF files appending cInputFile2 to cInputFile1.

Parameter Description

cInputFile1 The PDF file that is to be appended to.

cInputFile2 The PDF file that is to be appended at the end of cInputFile1.

Page 37 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

cOutputFile The output PDF file name.

returns Returns 1 if successful, 0 or a negative error code on failure.
the function failed you can call $filegetlasterror() to retrieve
additional error information.

$filereaddata()
Syntax: PDF Device.$filereaddata(cInputFile, cOutputListName) Returns err

Version: 5.0.0.0

Read the data from form fields within the specified PDF file and return their names and values
in a list.

Parameter Description

cInputFile1 The PDF file that is to be read.

cOutputListName The list name that is to receive the data from the form in the
PDF file. On return, the list will be populated with the
following columns if it had none to begin with:

FieldName: The internal name of the field
AltName: The readable name for messages
MapName: The name to be used for submits
Value: The field’s value

If you define the list before calling this method, you must
ensure it contains at least four columns or an error is returned.
You may use the same list to read multiple files, in which case
the fields of subsequent files are appended at the end of the list.

returns Returns 1 if successful, 0 or a negative error code on failure.
the function failed you can call $filegetlasterror() to retrieve
additional error information.

$filesign()
Syntax: PDF Device.$filesign(cInputFile, cOutputFile, cCertificateFile, cKeyFile,
cKeyFilePassword [, cSignReason, bSigPrintable=kFalse, bSigUseExisting=kTrue,
cSigFieldName, wAnnotationAtts]) Returns err

Version: 5.0.0.0

Sign the specified PDF file.

Parameter Description

cInputFile The PDF file to be signed.

cOutputFile The output PDF file name.

Page 38 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

cCertificateFile The certificate file, either PEM (*.pem) or P12 (*.p12) format.
When cCertificateFile file is a P12 file that includes both the
certificate and private key, cKeyFile can be left empty but
cKeyFilePassword must be specified as it is needed to extract
the information from the P12 file.

cKeyFile The path name to the private key file in PEM format (*.pem).

cKeyFilePassword The file password for the private key file specified by cKeyfile,
or for the certificate file specified by cCertificateFile, if that
file is a .p12 file that combines the certificate and private key
data.

cSignReason The reason for the signature (i.e. "I agree" or "Signing on
behalf of...", etc)

bSigPrintable If true, the signature can be printed.

bSigUseExisting CURRENTLY NOT SUPPORTED

cSigFieldName The internal name of form field that will be created as part of
the signature.

wAnnotationAtts A row variable that specifies annotation attributes via an
additional subset of row variables, the total having the nested
structure as follows:
annotation attributes - all measurements are in cms or inch depending

on $prefs.$usecms
row(

annotation box location
row(

PageNumber,
Left,
Top,
Width,
Height

),
image file path and location within annotation box
row(

Left,
Top,
Width,
Height,
ImageFilePath

)
text to be displayed within annotation box
row(

Left,
Top,
Text

)

Page 39 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

font information for annotation text - for the font name
use the text value of one of the kDevPdfFFSF... constants, i.e.
use con(kDevPdfFFSFHelvetica) to extract the font name

row(
FontName,
FontSize,
TextColor

)
)

returns Returns 1 if successful, 0 or a negative error code on failure.
the function failed you can call $filegetlasterror() to retrieve
additional error information.

$getfonterrors()
Syntax: PDF Device.$getfonterrors(&lFontErrors)

Version: 2.6.0 (updated for version 3.0.0)

Returns a list of errors and warnings related to font embedding since the last call to
$getfonterrors. Calling this method will clear the errors.

Parameter Description

lFontErrors Specifies the list variable that is to be populated with the errors.
The list is populated with three columns.

1. ErrorNumber - a number in the range 12 to 16
2. ErrorText - a description of the error
3. FontName - the postscript name of the effected font

The possible errors are

12. Font embedding error. Font is not a true type font.
13. Font embedding error. Font is not licensed for sub-

setting or embedding.
14. OBOSOLETE in version 3
15. Font embedding warning. Font licensing ignored.
16. Font embedding warning. Font style setting is not

supported with this font and was synthesised.
17. Font substitution warning. Font has been substituted.
18. Font character warning. Font cannot be embedded and

mapping to 8bit OS character failed.

Please refer to technical note TN0017 for full details.

returns kTrue if successful.

$getmemoryoutput(iOutputId,&xOutputVariable)
OBSOLETE: since version 4.0
use $setmemoryoutput instead

Page 40 of 53

http://www.brainydata.com/supportpublic/tn/tn0017.pdf

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

$initparams()
Syntax: PDF Device.$initparams([&rOutParams])

Version: 4.0

Restores the device settings of the executing server tread's main device to the global settings
from the main device of the application thread and may also return these settings in the optional
parameter.

Important Note: If this functions is executed from the application thread, it does nothing.

See also: $startserver()

Parameter Description

rOutParams Optional row variable that is to receive the device parameters

returns always returns zero

$setcreatorandproducer()
Syntax: PDF Device.$setcreatorandproducer(cApplicationName,cCompanyName)

Version: 1.5

Sets the creator and producer text that is embedded in the PDF document. This information is
displayed by some PDF viewers.

Important Note: The ‘(’ and ‘)’ characters are reserved and may not be used. There may also
be other characters that cannot be used with PDF creator and producer names and you must
ensure the strings that you provide do not cause PDF readers any issues. We recommend you
test your PDF files with different versions of the Adobe readers.

Parameter Description

cApplicationName Your software’s application/product name.

cCompanyName Your company name.

returns kTrue if successful.

$setmemoryoutput()
Syntax: PDF Device.$setmemoryoutput(cOutputVariableName[,cMimeFileName])

Version: 4.0

Sets the output to a memory variable which must be a variable within context at the time of this
call and it must still be alive by the time the device is closed after printing. If cMimeFileName
is specified output will be prefixed with a mime header.

Important Note: The specified variable must still exist by the time the report is printed or
Omnis may crash.

See also: $settempfilename()

Page 41 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Parameter Description

cOutputVariableName The name of the output variable. This can be a task variable of
the remote task, or a instance variable of the remote form. It
could also be a local variable in a method, as long as the report
is printed by the same method.

cMimeFileName If a file name is specified, the output data is prefixed with the
following mime-header:

content-type: application/pdf
content-length:[the byte length of the data]
content-disposition: filename=[the provided file name]

$settempfilename()
Syntax: PDF Device.$settempfilename(iMinutes,&cOutPath,&cOutName)

Version: 4.0

Generates and sets the destination file name (kDevPdfFileName) to a unique name in the
default Omnis PDF folder and returns the path and name. If iMinutes is > zero the file is stored
in the Omnis temp folder and is deleted after the specified minutes have expired.

Important Note: Please note that to use the Omnis default PDF folders, you will need to add a
“getpdfFolders” entry to the Omnis config.json file so that Omnis allows PDF files, which have
not been produced by OmnisPDF, to be downloaded to the client using the client commands
“showpdf” or “assignpdf”. Please contact Omnis software support if you have problems with
this.

Further Note: The unique portion of the generated file name is made up of an encoded date as
in YYMMDDHHNN plus a unique counter (within each one minute interval). This counter is
protected by a mutex lock to ensure absolute uniqueness amongst the server threads.

See also: $setmemoryoutput()

Parameter Description

iMinutes Specifies the number of minutes after which the file is deleted
by the BDPDF server.

cOutPath Returns the server path to the temp file name if cOutPath is
empty. If a path is specified, PDFDevice will use the specified
path.

cOutName Returns the generated unique name of the output file. You may
specify a full name with the extension “.pdf” in which case
PDFDevice will use the given name for the output file. You
may also specify a prefix (excluding the .pdf extension), in
which case PDFDevice will generate the unique portion that is
to follow the prefix. If cOutName is completely empty,
PDFDevice will use the prefix “bdpdf” followed by a unique
portion of the name.

Page 42 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

returns The function returns 1 if successful, 0 if it failed to generate a
unique file name, or -102 if the incorrect number of parameters
were passed.

$startserver()
Syntax: PDF Device.$startserver()

Version: 4.0

When executed, the external will create a device instance for each Omnis server thread (see
$prefs.$serverstacks) and copy the device settings from the application’s main device instance.
Once executed, device notation such as $setparam(), $getparam(), $open(), $close() will
address the device instance associated with the current execution thread. Consequently, any
device parameter actions are isolated from the other threads.

Important Note: This function must be called after executing the Omnis Start server
command.

Recommendation: Prepare device parameters on the main application thread prior to calling
this function so the server thread devices are initialised with the appropriate settings.

See also: $stopserver(), $initparams()

Parameter Description

returns The server stack count. A return value of zero indicates an
error, i.e. the Omnis Start server command has not yet been
executed.

$stopserver()
Syntax: PDF Device.$stopserver()

Version: 4.0

When executed, the device instances that were created when calling $startserver() will be
deleted.

Important Note: This function should be called prior to executing the Omnis Stop server
command.

See also: $startserver()

Parameter Description

returns always returns zero

Page 43 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Report Objects
This section documents the PDF report objects and their properties.

Form Field (v5.0)

This object is used for embedding Acroform fields in PDF files. Supported Acroform field
types are push-button, check-box, text, choice and signature fields. Radio button fields are
currently not supported, but the choice field can be used instead.

Name Type Description

$dataname Character PDF Form Object's initial value (if blank,
$defaultvalue is used instead, otherwise data
replaces default value)

For push-buttons, the data or default value
specifies the action of which there are currently
three types supported

URL~
When the value begins with the phrase
"URL~" the subsequent data specifies an URL
for submitting the form data using a standard
html POST message.
Example:
URL~https://demos.brainydata.com/test.php

Reset~
Generates a simple reset form action for the
button and no additional data follows the
phrase "Reset~"

Script~
The data that follows the phrase "Script~" is
Acrobat java script. For more details see the
Adobe Acrobat java script reference at
https://opensource.adobe.com/dc-acrobat-sdk-
docs/acrobatsdk/pdfs/acrobatsdk_jsapiref.pdf

$defaultvalue Character PDF Form Object's default value (initial and
when form is reset). See $dataname for details
relating to push-buttons.

$displayname Character The name to be displayed in the user interface.
This maps to the 'TU' entry in the field dictionary
in PDF. See the adobe PDF reference for more
details.

Page 44 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

$fieldflags Integer Set of flags for field. Which flags are relevant
depend on $fieldtype (one of the kDevPdfFFF...
constants). This maps to the 'Ff' entry in the field
dictionary in PDF. See the adobe PDF reference
for more details.

$fieldname Character The internal name of form field which can be
used by java script to identify and manipulate
form fields during actions. This maps to the 'T'
entry in the field dictionary in PDF. See the
adobe PDF reference for more details.

$fieldtype Constant PDF Form Object's type (Push-button, Check-
box, Text, Choice, Signature). One of the
kDevPdfFFT... constants.

Note: The Radio type is currently not supported

$fillcolor Omnis Color Field additional fill adornment: Specifies the
RGB fill color. Use an Omnis color constant or
the rgb() function to specify the color value.

$fntencoding Constant Specifies the font’s encoding. One of the
kDevPdfFFFE... constants.

$fntname Constant Specifies Standard PDF font name. Use one of
the kDevPdfFFSF... constants.

$fntsize Integer The font size in points.

$strokecolor Integer Field additional border adornment: Specifies the
RGB stroke color.

$strokeradius Integer Field additional border adornment: Specifies the
radius for rendering rounded corners of the
border.

$strokestyle Constant Field additional border adornment: Specifies the
stroke style, one of the kDevPdfFFB... constants.

$strokewidth Integer Field additional border adornment: Specifies the
stroke width in pixels.

$submitname Character the name to be used when the data is submitted.
This maps to the 'TM' entry in the field dictionary
in PDF. See the adobe PDF reference for more
details.

$txtcolor Omnis Color The field’s text color. Use an Omnis color
constant or the rgb() function to specify the color
value.

Page 45 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

PDF Parameters
This object is used to change device parameters for the current report instance. To change
device parameters only once at the start of the print job, place the object in the report header
section. To change parameters for individual pages, place the object in the page header section.

Name Type Description

$dataname Row Specifies the Omnis field (Row Variable) that
contains the device parameters. Use
$getparam(kDevPdfAll) to fetch the current
device parameters and then change the individual
columns as required.

Form Field Constants (v5.0)

This section documents the constants for use with the form field properties.

kDevPdfFFB...
Constants that specify the Form Field Border styles for the $strokestyle property. These
constants are exclusive, so you may only assign a single constant.

Name Dec. Value Description

kDevPdfFFBSolid 0 Solid line

kDevPdfFFBDash 1 Dashed line

kDevPdfFFBDot 2 Dotted line

kDevPdfFFBDashDot 3 Dash-Dot line

kDevPdfFFBDashDotDot 4 Dash-Dot-Dot line

kDevPdfFFF...
Constants that specify the Form Field Flags for use with $fieldflags. These constants are bit
based and multiple constants can be specified using the + operator.

Example:
.$fieldflags.$assign(kDevPdfFFFReadOnly+kDevPdfFFFRequired)

Name Hex Value Description

kDevPdfFFFReadOnly 00000001 Form button field (Push-button, Check-box or
Radio-button, see kDevPdfFFF... constants)

Note: Radio-button is currently not supported.

Page 46 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

kDevPdfFFFRequired 00000002 If set, the field must have a value at the time it is
exported by a submit-form action.

kDevPdfFFFNoExport 00000004 If set, the field must not be exported by a submit-
form action.

kDevPdfFFFMultiline 00001000 If set, the field can contain multiple lines of text;
if clear, the field’s text is restricted to a single
line.(text fields only)

kDevPdfFFFPassword 00002000 If set, the field is intended for entering a secure
password that should not be echoed visibly to the
screen.(text fields only)

kDevPdfFFFPushbutton 00010000 If set, the field is a pushbutton that does not retain
a permanent value. (button fields only)

kDevPdfFFFCombo 00020000 If set, the field is a combo box; if clear, the field
is a list box. (list fields only)

kDevPdfFFFComboEdit 00040000 If set, the combo box includes an editable text
box as well as a drop- down list; if clear, it
includes only a drop-down list. (list fields only)

kDevPdfFFFSort 00080000 If set, the field’s option items should be sorted
alphabetically. (list fields only)

kDevPdfFFFMultiSelect 00200000 If set, more than one of the field’s option items
may be selected simultaneously. (list fields only)

kDevPdfFFFFileSelect 00100000 If set, the text entered in the field represents the
pathname of a file whose contents are to be
submitted as the value of the field. (text fields
only)

kDevPdfFFFDoNotSpellCheck 00400000 If set, text entered in the field is not spell-
checked. (text/combo fields only)

kDevPdfFFFDoNotScroll 00800000 If set, the field does not scroll (horizontally for
single-line fields, vertically for multiple-line
fields) to accommodate more text than fits within
its annotation rectangle. (text fields only)

kDevPdfFFFRichText 02000000 If set, the value of this field should be represented
as a rich text string, i.e. fully-formed XML. (text
fields only)

kDevPdfFFFCommitOnSelChange 04000000 If set, the new value is committed as soon as a
selection is made with the pointing device.(list
fields only)

Page 47 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

kDevPdfFFFE...
Constants that specify the Form Field Font Encoding for the $fntencoding property. These
constants are exclusive, so you may only assign a single constant.

Name Dec. Value Description

kDevPdfFFFEplatform 0 Assign according to platform, either
kDevPdfFFFEmacRoman or
kDevPdfFFFEwinAnsi.

kDevPdfFFFEMacRoman 1 Mac standard encoding

kDevPdfFFFEWinAnsi 2 Windows standard encoding

kDevPdfFFFESymbol 3 Symbol font encoding

kDevPdfFFFEZapfDingbats 4 ZapfDingbats font encoding

kDevPdfFFSF...
Constants that specify the Form Field Standard Font for use with $fntname. These constants
are exclusive, so you may only assign a single constant.

Name Dec. Value Character Value

kDevPdfFFSFHelvetica 0 Helvetica

kDevPdfFFSFHelveticaBold 1 Helvetica-Bold

kDevPdfFFSFHelveticaOblique 2 Helvetica-Oblique

kDevPdfFFSFHelveticaBoldOblique 3 Helvetica-BoldOblique

kDevPdfFFSFTimesRoman 4 Times-Roman

kDevPdfFFSFTimesBold 5 Times-Bold

kDevPdfFFSFTimesItalic 6 Times-Italic

kDevPdfFFSFTimesBoldItalic 7 Times-BoldItalic

kDevPdfFFSFCourier 8 Courier

kDevPdfFFSFCourierBold 9 Courier-Bold

kDevPdfFFSFCourierOblique 10 Courier-Oblique

kDevPdfFFSFCourierBoldOblique 11 Courier-BoldOblique

kDevPdfFFSFSymbol 12 Symbol

kDevPdfFFSFZapfDingbats 13 ZapfDingbats

Page 48 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

kDevPdfFFT...
Constants that specify the Form Field Type for use with $fieldtype. These constants are
exclusive, so you may only assign a single constant.

Name Dec. Value Description

kDevPdfFFTButton 0 Form button field (Push-button, Check-box or
Radio-button, see kDevPdfFFF... constants)

Note: Radio-button is currently not supported.

kDevPdfFFTText 1 Form text field (single-line/multi-line/password,
etc, see kDevPdfFFF... constants)

kDevPdfFFTChoice 2 Form choice list (list-box or combo, see
kDevPdfFFF... constants)

kDevPdfFFTSignature 3 Form signature field

Page 49 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

Examples Reference
This reference serves as a guide to the most important classes in the example libraries
OWriteDocumentManager.lbs and PDFDeviceAndJSClient.lbs. This chapter only documents
methods and functionality of special interest. You will find additional comments in the methods
of the various classes.

OWrite Document manager library
This library encompasses the OWrite, OSpell2 and PDFDevice examples. Within this section we
will only concern our self with the classes that exclusively demonstrate the use of PDFDevice.
Although the OWrite examples use PDFDevice in many interesting ways, it is matter for the
OWrite documentation to elucidate on this further.

 wPDFOptions
Implements the advanced PDF options interface for setting the PDF options. Th library installs
this window into the device parameters and it is opened when you click the "Advanced..." button
on the "Parameters" pane of the Studio destination dialog when viewing the PDF Device
properties.

Other required classes: wPDFPickStyle

 wPDFPickStyle
Implements an interface for selecting styles from a series of check boxes. This window is opened
like a pop up selection dialog when you click the style combo button in the document outlines
pane of the wPDFOptions window.

Other required classes: wPDFOptions

 wSetCreatorProducer
This example window demonstrates the $setcreatorandproducer() feature of PDFDevice.

Other required classes: mPDFDevice

 rPDFDeviceSuper
This report super-class implements the PDF parameter report object and concerns itself with
loading the main device parameters into a instance row variable for manipulation of the device
parameters associated with the current print job.

 rPDFDeviceDoc & rPDFDeviceHRP
These classes demonstrate the printing of basic reports to PDFDevice.

Other required classes: wPDFOptions, mPDFDevice

Page 50 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

 mPDFDevice
This menu is installed as a sub-menu in the libraries main example menu “mExample”.

PDFDeviceAndJSClient library
This library implements three different client implementations and their different use of
PDFDevice. The classes for each example are organised into their own library folders and any
classes common to all examples are stored in a folder of common classes.

 e1_RemoteForm
This class demonstrates how to print to memory and return the PDF data to the client for
embedding in a HTML control or for display in a browser window. It also utilises the remote
PDF options form so that clients can directly change device parameters.

Other required classes: e1_RemoteTask, rfPDFOptions

 e1_RemoteTask
This class is required by e1_Remoteform for returning PDF data on an evPost event, when the
form displays the PDF in a browser window. It inherits the class rtPDFOptions.

Other required classes: rtPDFOptions

 e2_RemoteForm
This class demonstrates how to use the client commands “showpdf” and “assignpdf” in
conjunction with using temp files on the Omnis server. Just us e1_RemoteForm does, this class
utilises the remote PDF options form so that clients can directly change device parameters.

Other required classes: e1_RemoteTask, rfPDFOptions

 e2_RemoteTask
This class is required by e2_Remoteform for handling the PDF device parameters between
requests. It inherits the class rtPDFOptions.

Other required classes: rtPDFOptions

 e3_UltraThinCode
This code class implements a single method for producing an HTML file and opening it in the
default browser. The HTML contains a form that sends an ultra-thin request to the remote task
e3_RemoteTask that returns the PDF for display in a browser window.

Other required classes: e3_RemoteTask

Page 51 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

 e3_RemoteTask
This remote task implements the code to handle an ultra-thin request and prints and return the
PDF data with a mime header, using a binary local variable as the output destination.

 rfPDFOptions
This form implements the client interface for setting device options. It looks similar to the fat-
client window class wPDFOptions and works in very similar ways. It directly manipulates the
instance row variable that contain the complete set of device parameters. It requires a number of
additional classes for the implementation of its interface.

Other required classes: rtPDFOptions, rmFontName, rmFontSize, rmFontStyles

 rtPDFOptions
This remote class is the super-class for the example remote tasks and is the associated (design)
remote task for the rfPDFOptions remote form. It mainly provides the storage and implements
the maintenance of the instance row variable ivDeviceParams for maintaining device settings
between different server requests for its sub-classes and associated remote form instances.

 eX_Report, eX_ReportPDFBlurp, and eX_ReportPDFKeyActions
These reports are the example reports used in all of the above example forms. The class
eX_Report is populated with data (Title, First Name and Last Name) provided by the client for
printing a titled dummy letter. The other reports are used to add additional PDF blurb while
being useful in demonstrating how to print multiple reports to the same PDF file.

 wPDFOptions and wPDFPickStyle
These classes are the desktop windows which are mainly used by us (Brainy Data Engineers) to
configure the initial device parameters for the examples. The class wPDFOptions is a modified
version of the same windows in the OWrite Document Manager example. This class is modified
in as much as the it saves a copy of the device parameters to the file
PDFDeviceAndJSClient.prefs by calling the method Startup_Task.$saveDeviceParams().
Other required classes: Startup_Task

 Startup_Task
The startup task implements the preparation and startup of the Omnis Server and BDPDF server
for the purpose of these examples. It also checks the version number of the installed PDF Device
and initialises the global PDF device settings from the file PDFDeviceAndJSClient.prefs.

Other required classes: wStartup

Page 52 of 53

w
w
w
.b
ra
in
yd
at
a.
co
m

PDFDevice Documentation 2 Dec 2023 at 10:23

 wStartup
This window is opened by Startup_Task and displays the main navigational interface for the
examples.

 wConfigError
This error dialog is opened by wStartup when attempting to run example 3 and the Omnis
configuration file is not configured to take advantage of the Omnis PDF temp folders for
producing and displaying PDF files using the client commands ‘assignpdf’ and ‘showpdf’.

PDFDevicePoDoFo Library (v5.0)

This library demonstrates the new to version 5 Acroform and file handling features.

 objFileOps
Implements generic file handling functions for for the main examples. Used by all the new file
handling examples.

 repAcroForm
Implements the report for generating the Acroform PDF file. Used by the $filereaddata()
example to generate the PDF form that can be filled in using Adobe Reader and then read back
using the static method $filereaddata().

 winMain
This window implements the interface for all the version 5 examples.

Page 53 of 53

	About PDFDevice
	Introduction
	Downloading the Software and Examples
	Installing the Software
	Deploying your software

	History of Enhancements

	Introduction
	Overview
	Examples
	External component Library
	PDFDevice Main Features
	Acroform Fields Support
	Merging PDF Files
	Encryption and Signing of existing PDF Files
	Printing to memory
	Printing multiple Reports to the same file
	PDF/A Support
	Font Embedding
	Font substitution
	Font synthesising
	Image Compression
	Watermarks
	Background Image
	Document Info
	Viewer Options
	Bookmarks / Document Outlines
	Security
	Advanced Options Window
	Page Content and Font File Compression
	Supported Platforms
	Omnis Server Implementation

	Limitations
	External Report Objects
	Font Embedding

	Designing PDFDevice
	Integrating PDFDevice
	Downloading and Installing PDFDevice
	PDF Options Window
	External Device Parameters

	Beyond the basics
	Acroform Fields
	Combining Reports
	Printing to memory
	PDF Report Object
	Version Numbers

	Multi-threaded Server
	Library Startup
	Setting the Destination
	Printing
	Display PDF on Client
	Examples
	Managing Device Settings

	Further Reading

	External Reference
	Contents
	Device Parameters
	Basic Parameters
	General Parameters
	Watermark Options
	Document Info
	Viewer Options
	Bookmarks
	Compatibility Options
	Background Image
	Security Options

	Constants
	kDevPdfEncrypt...
	kDevPdfPerm...

	Device Properties
	Device Methods
	$canclose()
	$close()
	$flush()
	$getparam()
	$open()
	$senddata()
	$sendtext()
	$setparam()

	Static Methods
	$fileencrypt()
	$filemerge()
	$filereaddata()
	$filesign()
	$getfonterrors()
	$getmemoryoutput(iOutputId,&xOutputVariable)
	$initparams()
	$setcreatorandproducer()
	$setmemoryoutput()
	$settempfilename()
	$startserver()
	$stopserver()

	Report Objects
	Form Field
	PDF Parameters

	Form Field Constants
	kDevPdfFFB...
	kDevPdfFFF...
	kDevPdfFFFE...
	kDevPdfFFSF...
	kDevPdfFFT...

	Examples Reference
	OWrite Document manager library
	 wPDFOptions
	 wPDFPickStyle
	 wSetCreatorProducer
	 rPDFDeviceSuper
	 rPDFDeviceDoc & rPDFDeviceHRP
	 mPDFDevice

	PDFDeviceAndJSClient library
	 e1_RemoteForm
	 e1_RemoteTask
	 e2_RemoteForm
	 e2_RemoteTask
	 e3_UltraThinCode
	 e3_RemoteTask
	 rfPDFOptions
	 rtPDFOptions
	 eX_Report, eX_ReportPDFBlurp, and eX_ReportPDFKeyActions
	 wPDFOptions and wPDFPickStyle
	 Startup_Task
	 wStartup
	 wConfigError

	PDFDevicePoDoFo Library
	 objFileOps
	 repAcroForm
	 winMain

