
External Component Version Numbers
As third-party Omnis component suppliers we are in the unfortunate position that we have to
support numerous different versions of Omnis Studio for which we have to build and distribute
different DLLs. Our support team has been contacted on numerous occasions when the wrong
DLLs had been used for a particular version of Omnis Studio causing crashes, runtime errors, or
less obvious compatibility issues. Some time ago we took the decision to alter our component
version numbers so that one can identify the version of Studio for which a DLL was built.

All our components will be gradually updated as part of standard maintenance. The release notes
for each product that has been updated will state so and link to this document.

This document will explain the new format, and how one can identify the DLL to prevent
compatibility issues that may circumvent your internal QA. At the end of this document we will list
the current supported versions of Studio and how they relate to our new version numbers. Included
will also be a list of our products which have been updated to the new format. Consequently, this
document will be updated on a regular basis as we release new versions of our products or when
Tiger Logic releases new versions of Studio that require new builds.

IMPORTANT DOCUMENT CHANGES:

We have updated the supported studio versions table for Studio 8.0. Make sure you study this table
if you are using this version.

The old format 2

The new format 2

Checking the version programatically 2

Checking the file version of the DLL 3

Supported Studio versions 3

Updated External Components 4

2024 © Brainy Data Ltd Page of 1 5

Technical Note 0022All Products

The old format
All our Studio software now uses the new version number format thus we have removed
instructions regarding old version numbers.

The new format
The new version number format includes the major and minor version of Omnis Studio for which
the DLL was built and the four digit component version consisting of major, minor, maintenance
and patch digits. The complete version number will be “ab.cdef” where ‘a’ and ‘b’ are the Studio
major and minor digits and ‘c’, ‘d’, ’e’ and ‘f’ are the component’s major, minor, maintenance and
patch digits. For example the patch release “3.5.0.1” for Studio 10.22 will be returned as
“102.3501” by $version. The same component when built for Studio 8.1.7 will return “81.3501”.

Note: Version number strings displayed by the system may have a slightly different format. These
strings will typically display the component’s version number but further info may display the
Studio version number in parenthesis.

Checking the version programatically
It is possible to programmatically check component version numbers using the Omnis notation
$components.component_name.$version. We strongly recommend that Omnis Studio applications
always check the version numbers of Brainy Data external components against the minimum that is
required for the application to operate correctly. The best time to check the version is during startup,
perhaps in the startup task. Most of our examples provide sample code for this.

Example:

; this example tests for OWrite version 5.6.0.0 or better and
; Studio 11.0
Calculate required_version as "110.5600"
; check Studio compatibility by dropping the fraction
If (int(required_version) <> int($components.OWrite.$version))
 OK message {OWrite is incompatible with this version of Studio}
End If
; check xcomp compatibility by comparing the fraction
If (mod(required_version,1) > mod($components.OWrite.$version,1))
 OK message {OWrite version 5.6.0.0 or better is required}
End If

This example code is very simplistic and it requires the developer to update this code when
switching between different versions of Omnis Studio. The section “Supported Studio versions”
demonstrates a more sophisticated approach by checking the studio version utilising the sys(1)
function.

2024 © Brainy Data Ltd Page of 2 5

Checking the file version of the DLL
Brainy Data external component DLLs include system resources on Macintosh and Windows that
allows one to inspect the version number of the DLL in the file system. Unfortunately, due to
technical limitations, these version numbers will only display the three digit component version
number, but further system version info strings (typically following the copyright) may now display
the Studio version number for which the component was build inside parenthesis.

To view the DLL version number on Macintosh, right-click the external component bundle and
select “Get Info” from the context menu. The info window will display the version number as part
of the Brainy Data copyright message.

On Windows, right-click the external component DLL and select “Properties”. On the properties
window select the “Version” tab (“Details” tab in Windows 7). Both the “Copyright” and “Product
Version” will display the component’s version number.

You may notice a capital letter ‘R’ or ‘D’ following the version number. The ‘D’ stands for time
limited demo build and the ‘R’ stands for full release build which you will only receive when you
have licensed our software.

Supported Studio versions
We do not build different DLLs for every version of Studio. Below is the list of separate builds that
we provide and the versions of Studio that each build covers. This list will be updated as and when
Tiger Logic release new software that requires new builds.

When downloading demo software from our demo download page or release software from our
support pages, the downloaded folders containing the DLLs are arranged according to the Studio
version. For example the fat-client component of OWrite version 5.6.0.0 for Studio 10.1 versions
prior to version 10.2 on Macintosh is located in the folder

 owrite_5600_xxx_mac/studio_1010/xcomp

Studio version 10.2 components would be located in

 owrite_5600_xxx_mac/studio_1020/xcomp

Component Version Studio Versions Supported

81.xxx(x) All Studio 8.1 versions prior to version 10.0

100.xxx(x) All Studio 10.0 versions prior to version 10.1

101.xxxx All Studio 10.1 versions

102.xxxx All Studio 10.2 and 10.22 versions

110.xxxx All Studio 11.0 versions (until further notice)

2024 © Brainy Data Ltd Page of 3 5

Armed with the above information, we can now programmatically check the component’s version
numbers while catering for all currently known versions of Studio. When new versions of Studio
are used they will pass the test as long as the major versions match.

Example:

; get the studio major and minor version digits using sys(1)
; minor version is extracted as single digit so 8.1.7 will
; become 81 and 10.22 will become 102 (tmp is of type character)
Calculate tmp as sys(1)
Calculate studio_version as
 con(strtok(nam(tmp),’.’),mid(strtok(nam(tmp),'.'),1,1))
; get the studio version from the component you wish to test
Calculate tmp as $components.OWrite.$version
If (studio_version = strtok(nam(tmp),’.’))
Else
 ; put up message xcomp is not compatible with this version of studio
End if

; you may also now test the xcomp minimum version
; tmp now contains the xcomp version following the prior strtok call
If (5600 > int(tmp))
 ; put up message minimum version is oWrite 5.6.0.0
End if

Updated External Components
The following is the current list of external components that employ the new version number
format. The “Version” column displays the version number in which the new format was
introduced. This table will be updated as we release new versions of our software that implement
the new version format.

IMPORTANT NOTE: Since version 4.1.2.3, OWrite now has four digit version numbers following
the decimal separator.

Component Version Example Versions (Studio Interface)

OWrite  
JS-OWrite

5.6.0.0 81.5600 - 100.5600 - 101.5600 - 102.5600 - 110.5600

PDFDevice 5.2.0.0 81.5200 - 100.5200 - 101.5200 - 102.5200 - 110.5200

OSpell2 3.5.1.0 81.3510 - 100.3510 - 101.3510 - 102.3510 - 110.3510

OGantt 4.4.0.0 81.4400 - 100.4400 - 101.4400 - 102.4400 - 110.4400

OCal 2.3.0.0 81.2300 - 100.2300 - 101.2300 - 102.2300 - 110.2300

JS-Signature 1.3.0.0 81.1300 - 100.1300 - 101.1300 - 102.1300 - 110.1300

2024 © Brainy Data Ltd Page of 4 5

Document History
22 January 2024: Updated for Studio 11.0
20 October 2022: Updated for Studio 10.2
09 April 2020: Updated for Studio 10.1
02 July 2019: Updated for Studio 8.1 and 10.0
08 June 2016: Updated for Studio 8.0
02 September 2015: Updated for Studio 6.1
05 September 2013: Updated for OGantt version 4
14 August 2013: Updated for PDFDevice version 3
29 April 2013: minor grammatical corrections and signpost to OCal release notes
25 April 2013: first publication

2024 © Brainy Data Ltd Page of 5 5

	The old format
	The new format
	Checking the version programatically
	Checking the file version of the DLL
	Supported Studio versions
	Updated External Components

