
Creating Special Page Headers
OWrite and JS-OWrite page headers and footers can contain formatted text plus inline pictures,
which is sufficient for most types of document. However, more sophisticated text wrapping or
inserting of complex objects such as tables are not supported. For some types of document this may
be limiting.

The solution is to use header/footer template documents where the content of the document is
returned as a high-resolution image to an inline-picture field in the main document’s header or
footer. The inline-picture field can use the external source feature so the main document’s size is not
bloated by the high-resolution representation of the custom header/footer.

The implementation of this feature requires four distinct actions.

1. Create a custom header/footer template document.

2. Create a method for evaluating the template and producing a high-res image.

3. Provide an interface for inserting an inline-picture with an external source.

4. Implement an event for fetching the image data when OWrite requests it.

We have implemented a custom-page-header for our simple JS-OWrite example (see
OWriteDocumentManager.lbs) and we will use this example as the basis for explaining the process.

1. Create the template document
In our example we created a template document using the OWrite document manager. The template
contains a single table field with two columns. The left column contains fields for merging
company details and the right column is populated with a logo that was pasted from the clipboard.
We can use the interface provided by the document manager to insert and edit the required items.

!

2019 © Brainy Data Ltd Page ! of ! !1 5

Technical Note 0026OWrite & JS-OWrite

The calculated fields in the examples contain calculations such as $cinst.$eval(‘CompanyName’).
When we produce the high-res image from the template in the next stage, we must first evaluate the
document within the correct context.

2. Produce the high-res image data
To evaluate and create the high-res image we created a new object class objOWriteCommon which
can be found inside the folder OWrite Common. The object class inherits from the external non-
visual OWrite document object which allows it to load and evaluate OWrite documents.

!

The Simple JS-OWrite example already implemented an object class called objOWriteSimple for
evaluating documents. In order for this example to have access to this new feature, we have
changed the superclass of this object to objOWriteCommon. If we wanted to add this feature to the
OWrite desktop examples we could do a similar thing.

!

The objOWriteCommon object implements four methods.

Method $eval()
This method will be called by the calculated field when we evaluate the document template.

Please refer to the example source for further details.

Method $getHeadeBanner()
This method does the actual work of loading, evaluating and generating a high-res image from the
document template.

2019 © Brainy Data Ltd Page ! of ! !2 5

One of the key tricks is to set both the $screendpi and $printdpi to 288 pixels per inch. This not
only increases the resolution and thus quality of the final image that is produced, but 288 is also the
lowest common multiple of both 96 and 72, thus ensuring a smooth scaling of font sizes and pixels
on both windows and macintosh platforms.

Another key trick is the new feature we added to $picturefrompage(). This method can now receive
zero values for the width and height of the final image, indicating we want a full resolution image
(no scaling down), plus an additional parameter that specifies the ID of an OWrite object which
limits the image to the specified object (in our case our table field).

Please refer to the example source for further details.

Method $getHeaderBannerWidth()
Returns the image width in OWrite units (1/1000mm)

Method $getHeaderBannerHeight()
Returns the image height in OWrite units (1/1000mm)

3. Inserting the external source image
In our JS-OWrite simple example we chose to add an option to the context menu which will insert
the image.

!

Inserting the image will execute our $owriteInsertObject client method (see case kWriObjTypePict
near the end of the method).

As well as inserting the object, this method also updates the indents, page margin and header
margin to make room for the banner in the header area.

2019 © Brainy Data Ltd Page ! of ! !3 5

!

When the image with the external source has been inserted, OWrite will generate the
evGetDataFromSrc event, which brings us to the next stage.

4. Fetch the external source data
In our example we have actually put the cart before the horse in that we built the header banner
image when the remote form constructed. We did not wait for OWrite to request the image first. If
the image is only required some of the time, waiting for the request to generate the image would
probably be more efficient. However, in our case, rfOWriteSimple.$construct() calls $cinst.
$serverBuildHeaderBanner() which in turn calls objOWriteSimple.$getHeaderBanner(). Our
$serverBuildHeaderBanner() method converts the image to PNG and then populates our
ivSampleHeaderBanner row variable with the data and details of the image. This row variable can
be accessed by our client methods when the evGetDataFromSrc event is generated.

Our event code simply calls  
 $cinst.$objs.OWrite.$setdatafromsrc(pObjID,ivSampleHeaderBanner.pngImage)  
and we are done.

!

In order to return the horse before the cart, we could call $serverBuildHeaderBanner() not from
$construct(), but from our evGetDataFromSrc event and than execute $setdatafromsrc in our
$serverBuildHeaderBanner_return client method.

2019 © Brainy Data Ltd Page ! of ! !4 5

Document History
26 February 2019: corrections
19 February 2019: first publication

2019 © Brainy Data Ltd Page ! of ! !5 5

