
Client-Side Find & Replace
JS-OWite version 4.5 implements basic find-replace functionality without involving the server. The
new examples provide a working user interface for the most common Find & Replace actions.

We have broken down this document into three distinct parts. Part 1 explains the example user
interface, part 2 ventures behind the scenes for a look at the Omnis code and part 3 explains in
detail the new JS-OWrite client method $searchex(), which lies at the heart of the new Find &
Replace feature.

1. The user interface
The updated example search tab implements the various find and replace buttons as well as search
options including a regular expression option.

!

1.1 Simple Find
Entering a search string and clicking the “Find” button will perform a simple search of the
document. Repeatedly pressing the “Find” button will select subsequent matches until the search
returns to the starting point. When a search has gone full circle or if no matches are found,
appropriate messages are displayed.

1.2 Regular Expressions
JS-OWrite can also search the document using regular expressions such as “(PDFDevice|OSpell2)”.
This particular expression will search for either specified word. Again, repeatedly pressing the
“Find” button will select subsequent matches until the search returns to the starting point.

JS-OWrite expressions are javascript style regular expressions and detailed documentation of what
expressions are supported can be found at https://www.w3schools.com/jsref/jsref_obj_regexp.asp.

2019 © Brainy Data Ltd Page ! of ! !1 7

Technical Note 0031JS-OWrite

https://www.w3schools.com/jsref/jsref_obj_regexp.asp

1.3 Controlled Find & Replace
Performing controlled replace actions start with the search. Entering the search criteria followed by
clicking the “Find” button will execute the search and select the first match. Subsequently, the
“Replace & Find” button can be clicked to replace the selection and find the next match.
Alternatively, the “Find” button can be clicked to move onto the next match without replacing the
current selection. When the search returns to the starting point or if no matches are found,
appropriate messages are displayed.

1.4 Replace All
The “Replace All” button will replace all matches with the specified text. When all matches have
been replaced, a message is displayed telling the user how many matches have been replaced.

NOTE: The replace string must be plain text and cannot be a regular expression.

2019 © Brainy Data Ltd Page ! of ! !2 7

2. Behind the scene
All Find & Replace code in the example library is implemented to execute on the client. The
beating heart of the new functionality is the new method $searchex() which is documented in detail
in section 3. The previous method $search() is now obsolete but is still present for the time being.
This section will show some of the code behind each user action as it was described in section 1.

Note: To locate all relevant code in the example library you can search the library for the string
“change_2190531”.

2.1 Simple Find & Regular Expression Find
The “Find” button executes the rfOWFormatDocument.doFind. This method prepares the various
$searchex parameters based on the criteria selected by the user and calls $searchex() which
executes asynchronously.

JS-OWrite will generate the evAsyncDone event when the search action has completed. Our
example evAsyncDone case calls the method rfOWFormatDocument.$asyncDone to handle the
event.

!

2019 © Brainy Data Ltd Page ! of ! !3 7

The $asyncDone method displays the appropriate message if no match was found. Whether a match
was found or not, the method setReplaceButtonStates is called to enable or disable the replace
buttons accordingly.

!

This completes the behind-the-scenes look of the simple and regular expression find.

2.2 Controlled Find & Replace
A controlled Find & Replace typically involves two actions after the initial find. Clicking the
“Replace & Find” button calls the method rfOWFormatDocument.doReplace which is followed by
a call to the method rfOWFormatDocument.doFind.

!

2019 © Brainy Data Ltd Page ! of ! !4 7

The doReplace method simply executes a $insert to replace the current selection and although we
provide async information, the case for a controlled replace action in rfOWFormatDocument.
$asyncDone, implements no code as there is nothing else to be done after the selection has been
replaced.

!

The subsequent find action will follow the same route as described in section 2.1. This completes
the behind-the-scenes look of the controlled Find & Replace.

2.3 Replace All
The “Replace All” button calls the method rfOWFormatDocument.doReplaceAll. In many ways this
method appears very similar to the method rfOWFormatDocument.doFind. It prepares the various
$searchex parameters based on the Find & Replace criteria selected by the user and calls
$searchex().

!

When the replace-all action has been carried out by JS-OWrite, the evAsyncDone event is
generated and just as before, the event code calls the $asyncDone method.

!

2019 © Brainy Data Ltd Page ! of ! !5 7

3. The new search method
The new method $searchex() will search for the specified string or regular expression, selecting the
next match, or perform a replace-all action. On completion, an async message is generated if the
parameters asyncId and asyncData has been specified. Our Find & Replace interface makes use of
these async messages to keep track of whether the next click on the search button should supply a
mode of “New” or “Next” and to enable or disable the various Find & Replace buttons. When
receiving the async message evAsyncDone, the event parameter pAsyncResultData will contain the
result of the search or replace-all action. An unsuccessful search (including when a repeated search
has wrapped around to the starting point) will set this parameter to zero. The next search action
should then start a new search with the mode “New”. A successful search will set pAsyncResultData
to 1 and the next search should use the modes “Next” or “Prev”. A replace-all action can be
performed at any point and on completion pAsyncResultData will contain the number of
occurrences that have been replaced.

The method syntax
$searchex(searchType,searchValue,searchFlags,searchMode,replaceValue,asyncId,asyncData)

The method parameters
searchType: This can be of the strings “text”, “textRegExp”, “class”, “bookmark”. The

“textRegExp” type is new and JS regular expressions are fully explained at https://
www.w3schools.com/jsref/jsref_obj_regexp.asp. IMPORTANT: regular expressions are
explained as in “/pattern/modifiers;”. When calling $searchex you only specify the “pattern”
for the searchValue parameter and “modifiers” for the searchFlags parameter, thus excluding
the expression separators ‘/‘ and ‘;’.

searchValue: The search string when searchType is “text” or the regular expression pattern when
searchType is “textRegExp”.

searchFlags: Additional regular expression modifiers when searchType is “textRegExp”. If not
supplied the flags default to “gi” (global case insensitive search). IMPORTANT: you may
specify the non-standard expression flag ‘w’ for whole word searches. $searchex will always
append the “g” modifier flag which is essential for our implementation, but it does not have to
be specified by the developer. In most cases you may only specify “w” for whole word
searches or an empty string for case insensitive searches.

searchMode: One of the strings “Prev”, “Next”, “New” or “ReplaceAll” when searchType is “text”
or “textRegExp”. Whenever you start a new search (i.e. the search string has changed or you
completed the previous search by reaching the end of the document) the mode “New” should
be used. After the initial “New” you may continue searching with “Next” or “Prev”.

replaceValue: This specifies the new text for replace actions when searchMode is “ReplaceAll”.
Only plain text is supported.

2019 © Brainy Data Ltd Page ! of ! !6 7

asyncId: The async ID that is passed in the pAsyncId event parameter for the evAsyncDone event,
when the search or replace action has completed.

asyncData: The async data that is passed in the pAsyncData event parameter for the evAsyncDone
event, when the search or replace action has completed.

Document History
02 July 2019: first publication

2019 © Brainy Data Ltd Page ! of ! !7 7

